Publications by authors named "Taichi Furukawa"

Bubble printing is a patterning method in which particles are accumulated by the convection of bubbles generated by laser focusing. It is attracting attention as a method that enables the high-speed, high-precision patterning of various micro/nanoparticles. Although the bubble printing method is used for metallic particles and organic particles, most reports have focused on the patterning of solid particles and not on the patterning of liquid particles.

View Article and Find Full Text PDF

Herein, we investigated the effects of Camembert cheese (CC) and its fatty acid contents on cognitive function in mice by employing the object recognition test to evaluate hippocampus-dependent memory. Orally administered CC improved the cognitive decline induced by a high-fat diet. Next, we focused on myristamide (MA), oleamide, and stearamide, which are fatty acid amides produced during the fermentation process of CC.

View Article and Find Full Text PDF

Background: There is a sex-dependent difference in blood retinol and RBP concentrations, and plasma RBP is associated with insulin resistance.

Objectives: We aimed to clarify sex-dependent variations in body concentrations of retinol and RBPs and their association with sex hormones in rats.

Methods: Plasma and liver retinol concentrations and hepatic mRNA and plasma concentrations of RBP4 were analyzed in 3- and 8-wk-old male and female Wistar rats before and after sexual maturity (experiment 1) and in orchiectomized male Wistar rats (experiment 2) and ovariectomized female Wistar rats (experiment 3).

View Article and Find Full Text PDF

Recently, flexible devices using intrinsically conductive polymers, particularly poly(3,4-ethylenedioxythiophene) (PEDOT), have been extensively investigated. However, most flexible wiring fabrication methods using PEDOT are limited to two-dimensional (2D) fabrication. In this study, we fabricated three-dimensional (3D) wiring using the highly precise 3D printing method of stereolithography.

View Article and Find Full Text PDF

The development of handling technology for microscopic biological samples such as cells and spheroids has been required for the advancement of regenerative medicine and tissue engineering. In this study, we developed micro-tweezers with a compliant mechanism to manipulate organoids. The proposed method combines high-resolution microstereolithography that uses a blue laser and topology optimization for shape optimization of micro-tweezers.

View Article and Find Full Text PDF

We propose a simple autofocusing technique that can be introduced into conventional two-photon lithography systems without additional devices. Autofocusing is achieved by image processing using transmission images of photopolymerized voxels. The signal-to-noise ratio of transmission images was improved by optimal low-pass filtering to detect voxels in them.

View Article and Find Full Text PDF

A multi-scale direct writing method for metal microstructures is proposed and demonstrated. In this study, metal structures were created in a gelatin matrix containing silver nitrate by photoreduction using a 405-nm blue laser. The influence of concentrations of materials in the sample solution was evaluated by measuring the conductivity of the fabricated microstructures.

View Article and Find Full Text PDF

In this study, a three-dimensional (3D) micromanipulator mounted on a glass capillary is developed for handling biological samples, such as multicellular spheroids and embryos. To fabricate the micromanipulator, we developed an additive manufacturing system based on high-resolution microstereolithography using a 405-nm blue laser. The fabrication system makes it possible to fabricate 3D microstructures on a glass capillary with 2.

View Article and Find Full Text PDF

Rare-earth-doped nanoparticles are one of the emerging probes for bioimaging due to their visible-to-near-infrared (NIR) upconversion emission via sequential single-photon absorption at NIR wavelengths. The NIR-excited upconversion property and high photostability make this probe appealing for deep tissue imaging. So far, upconversion nanoparticles include ytterbium ions (Yb3  +  ) codoped with other rare earth ions, such as erbium (Er3  +  ) and thulium (Tm3  +  ).

View Article and Find Full Text PDF

We propose and demonstrate a simple, low-cost, three-dimensional (3D) shape acquisition method for transparent 3D printed microscopic objects. Our method uses ultraviolet (UV) illumination to obtain high-contrast silhouette images of transparent 3D printed polymer objects. Multiple silhouette images taken from different viewpoints make it possible to reconstruct the 3D shape of this transparent object.

View Article and Find Full Text PDF

Recent progress in understanding the essential roles of mechanical forces in regulating various cellular processes expands the field of biology to one where interdisciplinary approaches with engineering techniques become indispensable. Contractile forces or contractility-inherently present in proliferative cells due to the activity of ubiquitous nonmuscle myosin II (NMII)-are one of such mechano-regulators, but because NMII works downstream of diverse signaling pathways, it is often difficult to predict how the inherent cellular forces change upon perturbations to particular molecules. Here, we determine whether the contractility of individual cells is upregulated or downregulated based on an assay analyzing specific deformations of silicone gel substrates.

View Article and Find Full Text PDF

Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln/Yb (Ln: Tm, Ho, Er) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide range of emissions spanning from the visible to the NIR region under 980 nm excitation.

View Article and Find Full Text PDF

Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins.

View Article and Find Full Text PDF

We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film.

View Article and Find Full Text PDF

We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence(CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3∶Eu, Y2O3∶Tb) were sufficiently narrow to be distinguished.

View Article and Find Full Text PDF

We present a phosphor nanoparticle that shows both upconversion luminescence (UCL) and cathodoluminescence (CL). With this particle, low-autofluorescence, deep-tissue and wide-field fluorescence imaging can be achieved with nanometer-order high-spatial-resolution imaging. We synthesized Y2O3:Tm,Yb nanophosphors that emit visible and near-infrared UCL under 980 nm irradiation and blue CL via electron beam excitation.

View Article and Find Full Text PDF

High-resolution microscopy for biological specimens was performed using cathodoluminescence (CL) of Y(2)O(3):Eu, Zn nanophosphors, which have high CL intensity due to the incorporation of Zn. The intensity of Y(2)O(3):Eu nanophosphors at low acceleration voltage (3 kV) was increased by adding Zn. The CL intensity was high enough for imaging even with a phosphor size as small as about 30 nm.

View Article and Find Full Text PDF