We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown.
View Article and Find Full Text PDFArrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic.
View Article and Find Full Text PDFThe cytoplasmic surface of the G-protein coupled receptor (GPCR) rhodopsin is a key element in membrane receptor activation, molecular recognition by signalling molecules, and receptor deactivation. Understanding of the coupling between conformational changes in the intramembrane domain and the membrane-exposed surface of the photoreceptor rhodopsin is crucial for the elucidation of the molecular mechanism in GPCR activation. As little is known about protein dynamics, particularly the conformational dynamics of the cytoplasmic surface elements on the nanoseconds timescale, we utilised time-resolved fluorescence anisotropy experiments and site-directed fluorescence labelling to provide information on both, conformational space and motion.
View Article and Find Full Text PDFLittle is known about the molecular nature of residual structure in unfolded states of membrane proteins. A screen of chemical denaturants to maximally unfold the mammalian membrane protein and prototypic G protein coupled receptor rhodopsin, without interference from aggregation, described in an accompanying paper (DOI 10.1021/bi100338e ), identified sodium dodecyl sulfate (SDS), alone or in combination with other chemicals, as the most suitable denaturant.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2010
We studied functional interaction structures of the vertebrate membrane photoreceptor rhodopsin containing retinal as a chromophore. Using time-resolved fluorescence depolarization we analyzed real-time dynamics and conformational changes of the cytoplasmic helix 8 (H8) preceding the long C-terminal tail of rhodopsin. H8 runs parallel to the membrane surface and extends from transmembrane helix 7 whose highly conserved NPxxY(x)F motif connects that region of rhodopsin with the retinal binding pocket.
View Article and Find Full Text PDFHeterotrimeric G-proteins interact with their G-protein-coupled receptors (GPCRs) via key binding elements comprising the receptor-specific C-terminal segment of the alpha-subunit and the lipid anchors at the alpha-subunit N-terminus and the gamma-subunit C-terminus. Direct information about diffusion and interaction of GPCRs and their G-proteins is mandatory for an understanding of the signal transduction mechanism. By using single-particle tracking, we show that the encounters of the alpha-subunit C-terminus with the GPCR rhodopsin change after receptor activation.
View Article and Find Full Text PDFThe physico-chemical properties as well as the conformation of the cytoplasmic surface of the 7-helix retinal proteins bacteriorhodopsin (bR) and visual rhodopsin change upon light activation. A recent study found evidence for a transient softening of bR in its key intermediate M [Pieper et al. (2008) Phys.
View Article and Find Full Text PDFAdvanced multidimensional time-correlated single photon counting (mdTCSPC) and picosecond time-resolved fluorescence in combination with site-directed fluorescence labeling are valuable tools to study the properties of membrane protein surface segments on the pico- to nanoseconds time scale. Time-resolved fluorescence anisotropy changes of protein bound fluorescent probes reveal changes in protein dynamics and steric restriction. In addition, the change in fluorescence lifetime and intensity of the covalently bound fluorescent dye is indicative of environmental changes at the protein surface.
View Article and Find Full Text PDF