Publications by authors named "Tai-Hsien Ou-Yang"

Introduction: This study investigates the role of Fibroblast Activation Protein (FAP)-positive cancer-associated fibroblasts (FAP+CAF) in shaping the tumor immune microenvironment, focusing on its association with immune cell functionality and cytokine expression patterns.

Methods: Utilizing immunohistochemistry, we observed elevated FAP+CAF density in metastatic versus primary renal cell carcinoma (RCC) tumors, with higher FAP+CAF correlating with increased T cell infiltration in RCC, a unique phenomenon illustrating the complex interplay between tumor progression, FAP+CAF density, and immune response.

Results: Analysis of immune cell subsets in FAP+CAF-rich stromal areas further revealed significant correlations between FAP+ stroma and various T cell types, particularly in RCC and non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors.

View Article and Find Full Text PDF

Introduction: Fibroblast activation protein (FAP) is predominantly upregulated in various tumor microenvironments and scarcely expressed in normal tissues.

Methods: We analyzed FAP across 1216 tissue samples covering 23 tumor types and 70 subtypes.

Results: Elevated FAP levels were notable in breast, pancreatic, esophageal, and lung cancers.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein (, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the locus resulted in the identification of hot spots for activity in the 3' UTR.

View Article and Find Full Text PDF

Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking.

View Article and Find Full Text PDF

Similar environmental risk factors have been implicated in different neuropsychiatric disorders (including major psychiatric and neurodegenerative diseases), indicating the existence of common epigenetic mechanisms underlying the pathogenesis shared by different illnesses. To investigate such commonality, we applied an unsupervised computational approach identifying several consensus co-expression and co-methylation signatures from a data cohort of postmortem prefrontal cortex (PFC) samples from individuals with six different neuropsychiatric disorders-schizophrenia, bipolar disorder, major depression, alcoholism, Alzheimer's and Parkinson's-as well as healthy controls. Among our results, we identified a pair of strongly interrelated co-expression and co-methylation (E-M) signatures showing consistent and significant disease association in multiple types of disorders.

View Article and Find Full Text PDF

Purpose: Idasanutlin is a selective small-molecule MDM2 antagonist. It activates the tumor suppressor TP53 and is in phase 3 clinical trial for acute myeloid leukemia. Nonclinical studies have shown that glucuronidation is the major metabolizing mechanism for idasanutlin and UGT1A3 is the major metabolizing enzyme.

View Article and Find Full Text PDF

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-β dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers.

View Article and Find Full Text PDF

Exploring linkage disequilibrium (LD) patterns among the single nucleotide polymorphism (SNP) sites can improve the accuracy and cost-effectiveness of genomic association studies, whereby representative (tag) SNPs are identified to sufficiently represent the genomic diversity in populations. There has been considerable amount of effort in developing efficient algorithms to select tag SNPs from the growing large-scale data sets. Methods using the classical pairwise-LD and multi-locus LD measures have been proposed that aim to reduce the computational complexity and to increase the accuracy, respectively.

View Article and Find Full Text PDF

Background: The winning model of the Sage Bionetworks/DREAM Breast Cancer Prognosis Challenge made use of several molecular features, called attractor metagenes, as well as another metagene defined by the average expression level of the two genes FGD3 and SUSD3. This is a follow-up study toward developing a breast cancer prognostic test derived from and improving upon that model.

Methods: We designed a feature selector facility calculating the prognostic scores of combinations of features, including those that we had used earlier, as well as those used in existing breast cancer biomarker assays, identifying the optimal selection of features for the test.

View Article and Find Full Text PDF

Janus kinase-2 (JAK2) supports breast cancer growth, and clinical trials testing JAK2 inhibitors are under way. In addition to the tumor epithelium, JAK2 is also expressed in other tissues including immune cells; whether the JAK2 mRNA levels in breast tumors correlate with outcomes has not been evaluated. Using a case-control design, JAK2 mRNA was measured in 223 archived breast tumors and associations with distant recurrence were evaluated by logistic regression.

View Article and Find Full Text PDF

The accuracy with which cancer phenotypes can be predicted by selecting and combining molecular features is compromised by the large number of potential features available. In an effort to design a robust prognostic model to predict breast cancer survival, we hypothesized that signatures consisting of genes that are coexpressed in multiple cancer types should correspond to molecular events that are prognostic in all cancers, including breast cancer. We previously identified several such signatures--called attractor metagenes--in an analysis of multiple tumor types.

View Article and Find Full Text PDF

Mining gene expression profiles has proven valuable for identifying signatures serving as surrogates of cancer phenotypes. However, the similarities of such signatures across different cancer types have not been strong enough to conclude that they represent a universal biological mechanism shared among multiple cancer types. Here we present a computational method for generating signatures using an iterative process that converges to one of several precise attractors defining signatures representing biomolecular events, such as cell transdifferentiation or the presence of an amplicon.

View Article and Find Full Text PDF

We herein introduce an automated three-dimensional (3D) locomotion tracking and pose reconstruction system for rodents with superior robustness, rapidity, reliability, resolution, simplicity, and cost. An off-the-shelf composite infrared (IR) range camera was adopted to grab high-resolution depth images (640×480×2048 pixels at 20Hz) in our system for automated behavior analysis. For the inherent 3D structure of the depth images, we developed a compact algorithm to reconstruct the locomotion and body behavior with superior temporal and solid spatial resolution.

View Article and Find Full Text PDF