We report catalytic decomposition of few-layer graphene on an Au/SiOx/Si surface wherein oxygen is supplied by dissociation of the native SiOx layer at a relatively low temperature of 400 °C. The detailed chemical evolution of the graphene covered SiOx/Si surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native SiOx layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate.
View Article and Find Full Text PDFThe adsorption geometry of cis-2-butene-1,4-diol (BEDO, HOCH(2)CH=CHCH(2)OH) on Si(100)-2 x 1 was studied using scanning tunneling microscopy (STM), high resolution X-ray photoemission spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Bias-voltage-dependent STM images exhibited features characteristic of two distinct BEDO adsorption geometries. One feature was a bright protrusion located on the center of a single dimer, indicating an on-top configuration.
View Article and Find Full Text PDFBenzaldimine monolayer was exposed to soft X-rays, and the involved chemical transformation was investigated using X-ray photoelectron spectra and near-edge X-ray absorption fine structure spectroscopy. The spectroscopy indicated that irradiation of soft X-ray (550 eV)-induced selective transformation of the imine group into a nonhydrolyzable one, i.e.
View Article and Find Full Text PDF