Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.
View Article and Find Full Text PDFFlexible perovskite solar cells (F-PSCs) are appealing for their flexibility and high power-to-weight ratios. However, the fragile grain boundaries (GBs) in perovskite films can lead to stress and strain cracks under bending conditions, limiting the performance and stability of F-PSCs. Herein, we show that the perovskite film can facilely achieve in situ bifacial capping via introducing 4-(methoxy)benzylamine hydrobromide (MeOBABr) as the precursor additive.
View Article and Find Full Text PDFMixed Tin-Lead perovskite solar cells (Sn-Pb PSCs) with a narrow band gap (NBG) are significant for single-junction and all-perovskite tandem solar cells due to their low toxicity and ideal band gap. Nevertheless, the performance and stability of the device are adversely affected by the uncontrollable crystallization and ion migration processes. Acetic acid (HAc) is introduced into the perovskite precursor solution as a multifunctional additive to enhance the film crystallization process and restrain ion migration in the device.
View Article and Find Full Text PDFRecent evidence indicates that a high-fat diet (HFD) can promote tumor development, especially colorectal cancer (CRC), by influencing the microbiota. Regulatory circular RNAs (circRNAs) play an important role in modulating host-microbe interactions; however, the specific mechanisms by which circRNAs influence cancer progression by regulating these interactions remain unclear. Here, we report that consumption of a HFD modulates the microbiota by specifically upregulating the expression of the noncoding RNA hsa_circ_0126925 (herein referred to as circ_0126925) in CRC.
View Article and Find Full Text PDFDespite significant advances in the diagnosis and treatment of colorectal cancer (CRC), the prognosis for late-stage patients remains poor, highlighting the urgent need for new preventive and therapeutic strategies. Recent studies have focused on the ketogenic diet (KD) and its metabolite, β-hydroxybutyrate (BHB), for their tumor-suppressive effects and modulation of inflammatory responses. Using the azoxymethane (AOM) / dextran sulfate sodium (DSS)-induced mouse CRC model, we found that the ketogenic diet and BHB inhibit pro-tumor N2-type tumor-associated neutrophils (TANs) while promoting the polarization of TANs towards the anti-tumor N1 type.
View Article and Find Full Text PDFThis study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Cancer cells lacking functional p53 exhibit poor prognosis, necessitating effective treatment strategies. Inhibiting WEE1, the G2/M cell cycle checkpoint gatekeeper, represents a promising approach for treating p53-deficient NSCLC. Here, we investigate the connection between p53 and WEE1, as well as explore a synergistic therapeutic approach for managing p53-deficient NSCLC.
View Article and Find Full Text PDFResearch on the host responses to respiratory viruses could help develop effective interventions and therapies against the current and future pandemics from the host perspective. To explore the pathogenesis that distinguishes SARS-CoV-2 infections from other respiratory viruses, we performed a multi-cohort analysis with integrated bioinformatics and machine learning. We collected 3730 blood samples from both asymptomatic and symptomatic individuals infected with SARS-CoV-2, seasonal human coronavirus (sHCoVs), influenza virus (IFV), respiratory syncytial virus (RSV), or human rhinovirus (HRV) across 15 cohorts.
View Article and Find Full Text PDFThe large open circuit voltage () loss and phase segregation are two main obstacles hindering the development of wide-bandgap perovskite solar cells (PSCs). Even though substantial progress has been made through crystallization regulation and surface modification on perovskite, the mechanism of loss and phase segregation has rarely been studied. In this paper, we first investigate the halide ions distribution along the out-of-plane direction and find the initial inhomogeneous distribution of halide ions during the crystallization process is an important reason.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Air-processed perovskite solar cells (PSCs) with high photoelectric conversion efficiency (PCE) can not only further reduce the production cost but also promote its industrialization. During the preparation of the PSCs in ambient air, the contact of the buried interface not only affects the crystallization of the perovskite film but also affects the interface carrier transport, which is directly related to the performance of the device. Here, we optimize the buried interface by introducing 3-mercaptopropyltrimethoxysilane (MPTMS, (CHO)Si(CH)SH) on the nickel oxide (NiO) surface.
View Article and Find Full Text PDFGlobal profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer.
View Article and Find Full Text PDFEfficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells.
View Article and Find Full Text PDFPerovskite solar cell (PSC) is a promising photovoltaic technology that achieves over 26% power conversion efficiency (PCE). However, the high materials costs, complicated fabrication process, as well as poor long-term stability, are stumbling blocks for the commercialization of the PSCs in normal structures. The hole transport layer (HTL)-free carbon-based PSCs (C-PSCs) are expected to overcome these challenges.
View Article and Find Full Text PDFBackground: This research explores the significance of miR-215-5p and vasculogenic mimicry (VM) in forecasting the prognosis for hepatocellular carcinoma (HCC).
Methods: We analyzed HCC-associated miRNA expression profiles using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Samples included tissue and blood from 80 early-stage HCC patients and serum from 120 healthy individuals.
Background: Pulmonary adenocarcinoma with neuroendocrine differentiation (ADE_ned) is a relatively uncommon pathological classification, and there exists considerable debate regarding its prognosis and treatment. The purpose of this study was to analyze the survival difference between patients with neuroendocrine carcinoma (NEC), adenocarcinoma (ADE), or ADE_ned and to investigate the prognostic factors influencing the outcomes of individuals diagnosed with pulmonary ADE_ned.
Methods: We retrieved information on 316 cases of ADE_ned, 188,823 cases of ADE, and 71,154 cases of NEC diagnosed between 2004 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database.
Objective: This study aims to investigate the effect of lysine demethylase 5B (KDM5B)-mediated dimethyl-lysine 4 histone H3 (H3K4me2) demethylation on immune microenvironment remodeling in pancreatic cancer.
Methods: Pan 02 mouse pancreatic cancer cell lines were cultured and used to establish tumor model in vivo. RT-qPCR and Western blot were used to detect the expression of stimulator of interferon gene (STING) and KDM5B in pancreatic cancer tissues and Pan 02 cells.
Exosome metabolite-based noninvasive liquid biopsy is an emerging research hotspot that tends to substitute current means in clinics. Nanostructure-based mass spectrometry enables continuous exosome isolation and metabolic profiling with superior analysis speed and high efficiency. Herein, we construct a heterogeneous MXene hybrid that possesses ternary binding sites for exosome capture and outstanding matrix performance for metabolite analysis.
View Article and Find Full Text PDFThough Sn-Pb alloyed perovskite solar cells (PSCs) achieved great progress, there is a dilemma to further increase Sn for less-Pb requirement. High Sn ratio (>70%) perovskite exhibits nonstoichiometric Sn:Pb:I at film surface to aggravate Sn oxidation and interface energy mismatch. Here, ternary metal alloyed (FASnI ) (MAPb Zn I ) (x = 0-3%) is constructed for Pb% < 30% perovskite.
View Article and Find Full Text PDFFrom metabolic waste to biological mediators, exosomes have emerged as the key player in a variety of pathological processes, particularly in oncogenesis. The exosome-mediated communication network involves nearly every step of cancer progression, promoting the proliferation and immune escape of cancer cells. Therefore, the removal of cancer-derived exosomes has profound clinical significance.
View Article and Find Full Text PDFWe report a solution-processing method to prepare an inorganic LaNiO (LNO) hole-transport layer (HTL) under low temperature (<150 °C) for the first time. The inverted PSCs prepared with LNO exhibit high UV-stability and promising efficiency (17.15%).
View Article and Find Full Text PDFLiquid chromatography-mass spectrometry (LC-MS) is the method of choice for high-throughput proteomic research. Limited by the peak capacity, the separation performance of conventional single-dimensional LC hampers the development of proteomics. Combining different separation modes orthogonally, multidimensional liquid chromatography (MDLC) with high peak capacity was developed to address this challenge.
View Article and Find Full Text PDFThe aim of this study was to systematically evaluate the correlation between the rs231775 locus polymorphism in the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) gene and genetic susceptibility to Graves' disease (GD) in children. Some studies found that the CTLA-4 gene polymorphism was associated with GD in children. The data up to February 2022 were retrieved from the databases.
View Article and Find Full Text PDFReplication factor C 5 (RFC5) is involved in a variety of biological functions of cancer. However, the expression pattern of RFC5 and the underlying mechanisms in colorectal cancer (CRC) remain elusive. Here, we show that RFC5 is significantly upregulated in CRC tissues and cells.
View Article and Find Full Text PDF