While machine learning (ML) models hold promise for enhancing the management of acute kidney injury (AKI) in sepsis patients, creating models that are equitable and unbiased is crucial for accurate patient stratification and timely interventions. This study aimed to systematically summarize existing evidence to determine the effectiveness of ML algorithms for predicting mortality in patients with sepsis-associated AKI. An exhaustive literature search was conducted across several electronic databases, including PubMed, Scopus, and Web of Science, employing specific search terms.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI) has garnered considerable attention in the context of sepsis research, particularly in personalized diagnosis and treatment. Conducting a bibliometric analysis of existing publications can offer a broad overview of the field and identify current research trends and future research directions.
Objective: The objective of this study is to leverage bibliometric data to provide a comprehensive overview of the application of AI in sepsis.
Artificial intelligence (AI) has emerged as a promising tool in the field of healthcare, with an increasing number of research articles evaluating its applications in the domain of kidney disease. To comprehend the evolving landscape of AI research in kidney disease, a bibliometric analysis is essential. The purposes of this study are to systematically analyze and quantify the scientific output, research trends, and collaborative networks in the application of AI to kidney disease.
View Article and Find Full Text PDFProton pump inhibitors (PPIs) are widely prescribed in medical practice for the treatment of several gastrointestinal disorders. Previous epidemiology studies have reported the association between PPI use and the risk of AKI, although the magnitude of the association between PPIs and the risk of acute kidney injury (AKI) remains uncertain. Therefore, we conducted a meta-analysis to determine the relationship between PPI therapy and the risk of AKI.
View Article and Find Full Text PDFComput Methods Programs Biomed
April 2023
Background: The use of artificial intelligence in diabetic retinopathy has become a popular research focus in the past decade. However, no scientometric report has provided a systematic overview of this scientific area.
Aims: We utilized a bibliometric approach to identify and analyse the academic literature on artificial intelligence in diabetic retinopathy and explore emerging research trends, key authors, co-authorship networks, institutions, countries, and journals.
Esophageal cancer, one of the most common cancers with a poor prognosis, is the sixth leading cause of cancer-related mortality worldwide. Early and accurate diagnosis of esophageal cancer, thus, plays a vital role in choosing the appropriate treatment plan for patients and increasing their survival rate. However, an accurate diagnosis of esophageal cancer requires substantial expertise and experience.
View Article and Find Full Text PDFPrevious epidemiological studies have shown that proton pump inhibitor (PPI) may modify the risk of pancreatic cancer. We conducted an updated systematic review and meta-analysis of observational studies assessing the effect of PPI on pancreatic cancer. PubMed, Embase, Scopus, and Web of Science were searched for studies published between 1 January 2000, and 1 May 2022.
View Article and Find Full Text PDFIndian J Dermatol Venereol Leprol
January 2023
Background: Several epidemiological studies have shown that psoriasis increases the risk of developing atrial fibrillation but evidence of this is still scarce.
Aims: Our objective was to systematically review, synthesise and critique the epidemiological studies that provided information about the relationship between psoriasis and atrial fibrillation risk.
Methods: We searched through PubMed, EMBASE and the bibliographies for articles published between 1 January 2000, and 1 November 2017, that reported on the association between psoriasis and atrial fibrillation.
Proton pump inhibitors (PPIs) are used for maintaining or improving gastric problems. Evidence from observational studies indicates that PPI therapy is associated with an increased risk of gastric cancer. However, the evidence for PPIs increasing the risk of gastric cancer is still being debated.
View Article and Find Full Text PDFStud Health Technol Inform
June 2022
Most screening tests for Diabetes Mellitus (DM) in use today were developed using electronically collected data from Electronic Health Record (EHR). However, developing and under-developing countries are still struggling to build EHR in their hospitals. Due to the lack of HER data, early screening tools are not available for those countries.
View Article and Find Full Text PDFClinical decision support systems have been widely used in healthcare, yet few studies have concurrently measured the clinical effectiveness of CDSSs, and the appropriateness of alerts with physicians' response to alerts. We conducted a retrospective analysis of prescriptions caused disease-medication related alerts. Medication orders for outpatients' prescriptions, all aged group were included in this study.
View Article and Find Full Text PDFNowadays, the use of diagnosis-related groups (DRGs) has been increased to claim reimbursement for inpatient care. The overall benefits of using DRGs depend upon the accuracy of clinical coding to obtain reasonable reimbursement. However, the selection of appropriate codes is always challenging and requires professional expertise.
View Article and Find Full Text PDFGastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Identification of early gastric cancer (EGC) can ensure quick treatment and reduce significant mortality. Therefore, we aimed to conduct a systematic review with a meta-analysis of current literature to evaluate the performance of the CNN model in detecting EGC.
View Article and Find Full Text PDFCOVID-19 as a global pandemic has had an unprecedented impact on the entire world. Projecting the future spread of the virus in relation to its characteristics for a specific suite of countries against a temporal trend can provide public health guidance to governments and organizations. Therefore, this paper presented an epidemiological comparison of the traditional SEIR model with an extended and modified version of the same model by splitting the infected compartment into asymptomatic mild and symptomatic severe.
View Article and Find Full Text PDFBackground And Objective: Logical Observation Identifiers Names and Codes (LOINC) is a universal standard for identifying laboratory tests and clinical observations. It facilitates a smooth information exchange between hospitals, locally and internationally. Although it offers immense benefits for patient care, LOINC coding is complex, resource-intensive, and requires substantial domain expertise.
View Article and Find Full Text PDFBackground And Aims: The coronavirus disease 2019 (COVID-19) increases hyperinflammatory state, leading to acute lung damage, hyperglycemia, vascular endothelial damage, and a higher mortality rate. Metformin is a first-line treatment for type 2 diabetes and is known to have anti-inflammatory and immunosuppressive effects. Previous studies have shown that metformin use is associated with decreased risk of mortality among patients with COVID-19; however, the results are still inconclusive.
View Article and Find Full Text PDFLaboratory tests are performed to make effective clinical decisions. However, inappropriate laboratory test ordering hampers patient care and increases financial burden for healthcare. An automated laboratory test recommendation system can provide rapid and appropriate test selection, potentially improving the workflow to help physicians spend more time treating patients.
View Article and Find Full Text PDFArtificial intelligence (AI) has shown immense potential to fight COVID-19 in many ways. This paper focuses primarily on AI's role in managing COVID-19 using digital images, clinical and laboratory data analysis, and a summary of the most recent articles published last year. We surveyed the use of AI for COVID-19 detection, screening, diagnosis, the progression of severity, mortality, drug repurposing, and other tasks.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2021
Background And Objective: Association rule mining has been adopted to medical fields to discover prescribing patterns or relationships among diseases and/or medications; however, it has generated unreasonable associations among these entities. This study aims to identify the real-world profile of disease-medication (DM) associations using the modified mining algorithm and assess its performance in reducing DM pseudo-associations.
Methods: We retrieved data from outpatient records between January 2011 and December 2015 in claims databases maintained by the Health and Welfare Data Science Center, Ministry of Health and Welfare, Taiwan.
The application of artificial intelligence (AI) to health has increased, including to COVID-19. This study aimed to provide a clear overview of COVID-19-related AI publication trends using longitudinal bibliometric analysis. A systematic literature search was conducted on the Web of Science for English language peer-reviewed articles related to AI application to COVID-19.
View Article and Find Full Text PDFLevothyroxine is a widely prescribed medication for the treatment of an underactive thyroid. The relationship between levothyroxine use and cancer risk is largely underdetermined. To investigate the magnitude of the possible association between levothyroxine use and cancer risk, this retrospective case-control study was conducted using Taiwan's Health and Welfare Data Science Center database.
View Article and Find Full Text PDFBackground: The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia.
View Article and Find Full Text PDF