Hyperspectral image (HSI) data has a wide range of valuable spectral information for numerous tasks. HSI data encounters challenges such as small training samples, scarcity, and redundant information. Researchers have introduced various research works to address these challenges.
View Article and Find Full Text PDFIn the realm of hyperspectral image classification, the pursuit of heightened accuracy and comprehensive feature extraction has led to the formulation of an advance architectural paradigm. This study proposed a model encapsulated within the framework of a unified model, which synergistically leverages the capabilities of three distinct branches: the swin transformer, convolutional neural network, and encoder-decoder. The main objective was to facilitate multiscale feature learning, a pivotal facet in hyperspectral image classification, with each branch specializing in unique facets of multiscale feature extraction.
View Article and Find Full Text PDF