Background: Stroke is a significant global health concern, ranking as the second leading cause of death and placing a substantial financial burden on healthcare systems, particularly in low- and middle-income countries. Timely evaluation of stroke severity is crucial for predicting clinical outcomes, with standard assessment tools being the Rapid Arterial Occlusion Evaluation (RACE) and the National Institutes of Health Stroke Scale (NIHSS). This study aims to utilize Machine Learning (ML) algorithms to predict stroke severity using these two distinct scales.
View Article and Find Full Text PDFBackground: The global outbreak of COVID-19 (coronavirus disease 2019) disease has highlighted the importance of disease monitoring, diagnosing, treating, and screening. Technology-based instruments could efficiently assist healthcare systems during pandemics by allowing rapid and widespread transfer of information, real-time tracking of data transfer, and virtualization of meetings and patient visits. Therefore, this study was conducted to investigate the applications of clinical informatics (CI) during the COVID-19 outbreak.
View Article and Find Full Text PDFPre-hospital care is provided by emergency medical services (EMS) staff, the initial health care providers at the scene of disaster. This study aimed to describe the characteristics of EMS callers and space-time distribution of emergency requests in a large urban area. Descriptive thematic maps of EMS requests were created using an empirical Bayesian smoothing approach.
View Article and Find Full Text PDF