Background: The purpose of this study was to investigate drug release kinetics and cytotoxicity of a novel drug delivery system for treatment of periodontitis.
Materials And Methods: This study addresses the fabrication of a polycaprolactone/alginic acid-based polymeric film loaded with metronidazole, as a basic drug in the treatment of periodontal diseases. Films were prepared by solvent casting technique.
The present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)-as a nonsteroidal anti-inflammatory drug-into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant and 1-dodecanethiol as a pore expander under basic condition. The focus of the present study was to optimize the incorporation of IBU molecules into MHANPs under different loading conditions.
View Article and Find Full Text PDFTissue Cell
April 2020
Objectives: We aim to develop a 3D-bilayer collagen (COL) membrane reinforced with nano beta-tricalcium-phosphate (nβ-TCP) particles and to evaluate its bone regeneration in combination with leukocyte-platelet-rich fibrin (L-PRF) in vivo.
Background Data: L-PRF has exhibited promising results as a cell carrier in bone regeneration in a number of clinical studies, however there are some studies that did not confirm the positive results of L-PRF application.
Methods: Mechanical & physiochemical characteristics of the COL/nβ-TCP membrane (1/2 & 1/4) were tested.
Objective: Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices.
View Article and Find Full Text PDFBackground: Evidence on the protecting effect of laser on bleached enamel is scarce and controversial. Therefore, we aimed to test for the first time whether different wavelengths of diode laser (810 and 980 nm) can prevent enamel surface corrosion. We also tested for the first time whether such therapeutic effects of laser are limited to specific "laser-activated" bleaching gels or both conventional and laser-activated gels.
View Article and Find Full Text PDFSilica aerogels are porous and extremely lightweight nano-materials that show interesting properties. These materials, because of biocompatibility, non-harmful to the body, and special physical characteristics such as large surface area and low density have great potential for use in a drug delivery system (DDS). The focus of this study is the evaluation of the effects of silica aerogels on improving the release rate of Ketoprofen as a relevant model drug of poorly soluble drugs in water.
View Article and Find Full Text PDFObjective: The purpose of this study was to investigate the degree of conversion (DC) and mechanical properties of a microhybrid Filtek Z250 (3M ESPE) resin composite after aging.
Method: The specimens were fabricated using circular molds to investigate Vickers microhardness (Vickers hardness number [VHN]) and DC, and were prepared according to ISO 4049 for flexural strength testing. The initial DC (%) of discs was recorded using attenuated total reflectance-Fourier transforming infrared spectroscopy.
Purpose: The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base.
Materials And Methods: TiO nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR.
The aim of this study was to synthesize and characterize novel three-dimensional porous scaffolds made of poly (lactic-co-glycolic acid)/TiO nanotube (TNT) composite microspheres for bone tissue engineering applications. The incorporation of TNT greatly increases mechanical properties of PLGA/TNT microsphere-sintered scaffold. The experimental results exhibit that the PLGA/0.
View Article and Find Full Text PDFIran J Pharm Res
January 2018
The purpose of this study was to investigate the antimicrobial properties of a conventional poly methyl methacrylate (PMMA) modified with hydrothermally synthesised titanium dioxide nanotubes (TNTs). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentrations (MFC) for planktonic cells of the TiO nanotubes solution against and were determined. The powder of conventional acrylic resin was modified using 2.
View Article and Find Full Text PDFObjective: A systematic characterization of hybrid scaffolds, fabricated based on combinatorial additive manufacturing technique and freeze-drying method, is presented as a new platform for osteoblastic differentiation of dental pulp cells (DPCs).
Methods: The scaffolds were consisted of a collagenous matrix embedded in a 3D-printed beta-tricalcium phosphate (β-TCP) as the mineral phase. The developed construct design was intended to achieve mechanical robustness owing to 3D-printed β-TCP scaffold, and biologically active 3D cell culture matrix pertaining to the Collagen extracellular matrix.
Mater Sci Eng C Mater Biol Appl
August 2017
Hydroxyapatite (HA) is a proper scaffold for bone repair, however, it is not of excellent mechanical properties. Most previous studies on the effect of temperature increases were in vitro and had assessed merely improvements of HA's physicomechanical quality. This in vitro/vivo study investigated the effect of temperature increases from 870 to 920°C on physicomechanical and biological quality of Nano-HA.
View Article and Find Full Text PDFMicrospheres formulated from poly (D, L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2017
In this research, the three dimensional porous scaffolds made of a polycaprolactone (PCL) microsphere/TiO nanotube (TNT) composite was fabricated and evaluated for potential bone substitute applications. We used a microsphere sintering method to produce three dimensional PCL microsphere/TNT composite scaffolds. The mechanical properties of composite scaffolds were regulated by varying parameters, such as sintering time, microsphere diameter range size and PCL/TNT ratio.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2016
Aims: The purpose of this multi-phase explorative in vivo animal/surgical and in vitro multi-test experimental study was to (1) create a 3wt%-nanostrontium hydroxyapatite-enhanced calcium phosphate cement (Sr-HA/CPC) for increasing bone formation and (2) creating a simvastatin-loaded poly(lactic-co-glycolic acid) (SIM-loaded PLGA) microspheres plus CPC composite (SIM-loaded PLGA+nanostrontium-CPC). The third goal was the extensive assessment of multiple in vitro and in vivo characteristics of the above experimental explorative products in vitro and in vivo (animal and surgical studies).
Methods And Results Pertaining To Sr-ha/cpc: Physical and chemical properties of the prepared Sr-HA/CPC were evaluated.
Durability and the rate of complications of homograft heart valves, adjusted for patient-related contributors and surgical techniques, rely mainly on the quality of allografts which in turn are mirrored in the donor characteristics and most importantly recovery and processing procedures. Aimed to assess the quality, a study was conducted to figure out the durability and late outcome following homograft replacement with valved conduits procured by the Iranian Tissue Bank. Retrospectively, the pre-implantation, perioperative and follow-up data of 400 non-consecutive recipients of cryopreserved heart valves (222 pulmonary and 178 aortic) from 2006 to 2015 were collected and analyzed in terms of variables reflecting late outcome including adverse events and durability.
View Article and Find Full Text PDFObjectives: To verify the effects of alternating thermal changes in aqueous media and chemical composition on mechanical properties of apatite-mullite glass-ceramics and to investigate concentration of ions eluted from glass-ceramics in aqueous media.
Materials And Methods: The glass compositions were from SiO2Al2O3P2O5CaOTiO2BaOZrO2CaF2 system. Glass-ceramics were prepared by heat-treating at 1100°C for 3h samples alternately immersed in water at 5 and 60°C.
Background And Purpose: Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA.
Methods: Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode).
Purpose: Bonding agents (BA) are the crucial weak link of composite restorations. Since the commercial materials' compositions are not disclosed, studies to formulize the optimum ratios of different components are of value. The aim of this study was to find a proper formula of BAs.
View Article and Find Full Text PDFObjective: Human endometrium has enormous regenerative capacity due to the presence of endometrial stem cells. The present study sought to assess the possibility of differentiation of these cells into odontoblast-like cells by in vitro induction.
Methods: Endometrial stem-like cells were obtained using enzymatic digestion of the biopsy samples of the endometrium after hysterectomy and cultured in Dulbecco's Modified Eagle's Medium (DMEM) which contained dentine non-collagenous proteins (dNCPs).
Purpose: Heat of composite polymerization (HP) indicates setting efficacy and temperature increase of composite in clinical procedures. The purpose of this in vitro experimental study was to evaluate the effects of 5 temperatures on HP of two new composites.
Materials And Methods: From each material (Core Max II [CM] and King Dental [KD]), 5 groups of 5 specimens each were prepared and their total HPs (J/gr) were measured and recorded, at one of the constant temperatures 0℃, 15℃, 23℃, 37℃ and 60℃ (2 × 5 × 5 specimens) using a differential scanning calorimetry (DSC) analyzer.
Propolis has traditionally been used in curing infections and healing wounds and burns. Current researches have shown that propolis has antibacterial, antifungal and antiviral actions however, the pharmacological activity of propolis is highly variable depending on its geographic origin. There have been few studies on the effects of Iranian propolis on the oral microorganisms.
View Article and Find Full Text PDF