Publications by authors named "Tahereh Khajvand"

Multiplexed protein secretion analysis of single cells is important to understand the heterogeneity of cellular functions and processes in healthy and disease states. However, current single-cell platforms, such as microwell-, microchamber-, or droplet-based assays, suffer from low single-cell occupancy, waste of reagents, limited sensitivity, or inability to perform necessary operations, To overcome these drawbacks, we present an integrated droplet microfluidic device that interfaces with spatially patterned antibody barcodes for multiplexed single-cell secretome analysis. The trapping array of 100 picoliter-sized isolation chambers could achieve >80% single-cell capture efficiency with >90% viability.

View Article and Find Full Text PDF

Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics.

View Article and Find Full Text PDF

The effects of six synthetic imidazolium-based ionic liquids (ILs) on the Cu(II)-catalyzed chemiluminescence of lucigenin (Luc-CL) in the pH range 6.0-11 were investigated. Preliminary experiments found that the CL emission was strongly enhanced or inhibited in the presence of the ILs.

View Article and Find Full Text PDF

A new sensitive chemiluminescence (CL) procedure for the detection of hexythiazox (HXTZ) is presented, based on the quenching effect of the HXTZ in the luminol-H2O2 system using gold nanoparticles (GNPs) as a catalyst. The Box-Behnken design matrix and response surface methodology (RSM) have been applied in designing the experiments for studying the interactive effects of the three most important variables pH, luminol, and H2O2 concentrations on the CL intensity of luminol catalysed by GNPs. Under the optimal conditions, the CL intensity was linear with HXTZ concentration in the range of 0.

View Article and Find Full Text PDF

The catalyzed luminol chemiluminescent reaction has received a great amount of attention because of its high sensitivity and low background signal which make the reaction an attractive analytical chemistry tool. The present study, introduces the beneficial catalytic effects of dinuclear Cu(II) complex [Cu2L2(TAE)]X2, where TAE=tetraacetylethane; L=N,N(')-dibenzylethylenediamine and X=ClO4 on the luminol chemiluminescent reaction as a novel probe for the determination of glutathione (GSH) and L-cysteine (CySH) in human serum and urine. The [Cu2L2(TAE)]X2 has exhibited highly efficient catalytic activity of luminol CL as an artificial peroxidase model at pH as low as 7.

View Article and Find Full Text PDF

A novel, simple, cheap, and high sensitivity batch chemiluminescent method for the determination of catecholamine drugs, epinephrine (E), dopamine (DA) and methyldopa (MD) at microgram levels in pharmaceutical formulations is described. The method is based on a chemiluminescence (CL) system arising from the reaction of bis(2,4,6-trichlorophenyl) oxalate (TCPO) with H₂O₂ in the presence of a novel fluorescer, furandicarboxylate, and is proposed as a new analytical method for the determination of catecholamines. The method is based on the inhibition of CL emission by DA and its enhancement by E and MD.

View Article and Find Full Text PDF

Colour emission of core-shell silica-PEG nanoparticles in water is tuned with an electrochemically induced energy transfer approach. The lack of solubility problems, side electrochemical reactions involving donors and acceptors within the nanoparticle, and the possibility of using many classes of dyes in ECL applications confirm the validity of this strategy.

View Article and Find Full Text PDF