Myotonic dystrophy type 1 (DM1) is a genetic neuromuscular progressive multisystem disease that results in a broad spectrum of clinical central nervous system (CNS) involvement, including problems with memory, attention, executive functioning, and social cognition. Fractional anisotropy and mean diffusivity along-tract data calculated using diffusion tensor imaging techniques play a vital role in assessing white matter microstructural changes associated with neurodegeneration caused by DM1. In this work, a novel spectrogram-based deep learning method is proposed to characterize white matter network alterations in DM1 with the goal of building a deep learning model as neuroimaging biomarkers of DM1.
View Article and Find Full Text PDFDisease-modifying treatments have transformed the natural history of spinal muscular atrophy (SMA), but the cellular pathways altered by SMN restoration remain undefined and biomarkers cannot yet precisely predict treatment response. We performed an exploratory cerebrospinal fluid (CSF) proteomic study in a diverse sample of SMA patients treated with nusinersen to elucidate therapeutic pathways and identify predictors of motor improvement. Proteomic analyses were performed on CSF samples collected before treatment (T0) and at 6 months (T6) using an Olink panel to quantify 1113 peptides.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
The myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body. Many individuals with DM experience cognitive, behavioral and other functional central nervous system effects that impact their quality of life. The extent of psychological impairment that will develop in each patient is variable and unpredictable.
View Article and Find Full Text PDFThe myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body and the brain. DM patients have difficulties with memory, attention, executive functioning, social cognition, and visuospatial function. Quantifying and understanding diffusion measures along main brain white matter fiber tracts offer a unique opportunity to reveal new insights into DM development and characterization.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Myotonic dystrophies (DM) are neuromuscular conditions that cause widespread effects throughout the body. There are brain white matter changes on MRI in patients with DM that correlate with neuropsychological functional changes. How these brain alterations causally relate to the presence and severity of cognitive symptoms remains largely unknown.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2020
Although a well-established body of literature has examined electrophysiological muscle classification methods and systems, ways to enhance their transparency is still an important challenge and requires further study. In this work, a transparent semi-supervised electrophysiological muscle classification system which uses needle-detected EMG signals to classify muscles as normal, myopathic, or neurogenic is proposed. The electrophysiological muscle classification (EMC) problem is naturally formulated using multiple instance learning (MIL) and needs an adaptation of standard supervised classifiers for the purpose of training and evaluating bags of instances.
View Article and Find Full Text PDFObjective: Electrophysiological muscle classification (EMC) is a crucial step in the diagnosis of neuromuscular disorders. Existing quantitative techniques are not sufficiently robust and accurate to be reliably clinically used. Here, EMC is modeled as a multiple instance learning (MIL) problem and a system to infer unsupervised motor unit potential (MUP) labels and create supervised muscle classifications is presented.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2017
Electrophysiological muscle classification involves characterization of extracted motor unit potentials (MUPs) followed by the aggregation of these MUP characterizations. Existing techniques consider three classes (i.e.
View Article and Find Full Text PDFObjective: Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2014
The shapes and sounds of isolated motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide a significant source of information for diagnosis, treatment and management of neuromuscular disorders. These parameters can be analyzed qualitatively by an expert or quantitatively by using pattern recognition techniques. Due to the advantages of quantitative EMG method, developing robust automated MUAP classifiers have been explored and several systems have been developed for this purpose by now, but the accuracy of the existing methods is not high enough to be used in clinical environments.
View Article and Find Full Text PDF