Publications by authors named "Taher Gheewala"

Objectives: Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer death in men in the USA. Photodynamic therapy (PDT) is a state-of-the-art treatment that combines high selectivity with minor side effects. Pheophorbide-a (Pheo) is a natural pigment with a photosensitizer property.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the third leading cause of death in men in the United States and its treatment options include surgery, anti-hormonal drugs for androgen sensitive tumors, and radiotherapy. An alternative treatment is the use of photodynamic therapy (PDT), which involves the activation of a photosensitizer by a defined wavelength of light in the presence of oxygen, generating transient concentrations of reactive oxygen species (ROS). In this study, we explored the anti-cancer potential and mechanism of action of PDT using pheophorbide (Pheo) as a photosensitizer in combination with 670nm LEDs.

View Article and Find Full Text PDF

The search for new therapeutics for the treatment of prostate cancer is ongoing with a focus on the balance between the harms and benefits of treatment. New therapies are being constantly developed to offer treatments similar to radical therapies, with limited side effects. Photodynamic therapy (PDT) is a promising strategy in delivering focal treatment in primary as well as post radiotherapy prostate cancer.

View Article and Find Full Text PDF

Hepatoma-derived growth factor (HDGF) is a heparin-binding growth factor, which has previously been shown to be expressed in a variety of cancers. HDGF overexpression has also previously been correlated with a poor prognosis in several cancers. The significance of HDGF in prostate cancer, however, has not been investigated.

View Article and Find Full Text PDF

The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE) alone or in combination with cisplatin by cell viability assay on human breast (MCF-7) and cervical (HeLa) cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR.

View Article and Find Full Text PDF