Publications by authors named "Taha Erenler"

Objective: Noninvasive electrocardiographic imaging (ECGI) is a promising tool for revealing crucial cardiac electrical events with diagnostic potential. We propose a novel nonparametric regression framework based on multivariate adaptive regression splines (MARS) for ECGI.

Methods: The inverse problem was solved by using the regression model trained with body surface potentials (BSP) and corresponding electrograms (EGM).

View Article and Find Full Text PDF

In electrocardiographic imaging (ECGI), one solves the inverse problem of electrocardiography (ECG) to reconstruct equivalent cardiac sources based on the body surface potential measurements and a mathematical model of the torso. Due to attenuation and spatial smoothing within the torso, this inverse problem is ill-posed. Among many regularization approaches used in the ECG literature to overcome this ill-posedness, statistical techniques have received great attention because of their flexibility to represent the data, and ability to provide performance evaluation tools for quantification of uncertainties and errors in the model.

View Article and Find Full Text PDF