Publications by authors named "Tagnon D Missihoun"

Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, β-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones.

View Article and Find Full Text PDF

Ammonium sulfate is well known to salt out proteins at high concentrations. The study revealed that it can serve to increase by 60% the total number of identified carbonylated proteins by LC-MS/MS. Protein carbonylation is a significant post-translational modification associated with reactive oxygen species signaling in animal and plant cells.

View Article and Find Full Text PDF

Introduction: Protein carbonylation is a non-enzymatic and irreversible post-translational modification that occurs naturally in living organisms under the direct or indirect effect of reactive oxygen species (ROS). In animals, signaling pathways involving numerous carbonylated proteins have been identified, highlighting the dual role of these molecules in ROS signal transduction. In plants, studies on phytohormone signaling (auxin, methyl jasmonate, abscisic acid) have shown that reactive carbonyl species (RCS: acrolein, malondialdehyde, 4-hydroxynonenal, etc.

View Article and Find Full Text PDF

Protein carbonylation is a post-translational modification associated with the reactive oxygen species. It results from the direct oxidation of the side chains of Lys, Arg, Pro, and Thr residues by hydroxyl radical HO or the addition of reactive carbonyl species including α,β-unsaturated aldehydes and oxylipins to the side chain of Cys, His, and Lys. Recent findings indicated that the phytohormone abscisic acid (ABA) induces the production of α,β-unsaturated aldehydes that modulate the effect of ABA on stomatal closure.

View Article and Find Full Text PDF

Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs).

View Article and Find Full Text PDF

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids.

View Article and Find Full Text PDF

ALDH7B4 expression contributes to abiotic stress tolerance. The NAC transcription factor ATAF1 is a main regulator of expression of the ALDH7B4 gene in Arabidopsis thaliana as shown by ATAF1 mutants. The aldehyde dehydrogenase 7B4 (ALDH7B4) protein has important roles in detoxification of excessive aldehydes, elimination of reactive oxygen species (ROS) and inhibition of lipid peroxidation when plants are exposed to abiotic stress.

View Article and Find Full Text PDF

Aldehyde dehydrogenase enzymes (ALDHs) catalyse the oxidation of a broad range of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD or NADP as cofactors. In our article published in Scientific Reports, we demonstrated that mutations in Arabidopsis ALDH3I1 and ALDH7B4 genes altered the cellular contents of NAD(P)H, the total as well as the reduction state of glutathione; and decreased the efficiency of photosynthesis, thus placing ALDH activity as an important source of reducing power for cellular redox homeostasis. Our results also revealed that the ALDHs contribute to the reducing power required for the nitrate assimilation.

View Article and Find Full Text PDF

Aldehyde dehydrogenase enzymes (ALDHs) catalyze the oxidation of aliphatic and aromatic aldehydes to their corresponding carboxylic acids using NAD or NADP as cofactors and generating NADH or NADPH. Previous studies mainly focused on the ALDH role in detoxifying toxic aldehydes but their effect on the cellular NAD(P)H contents has so far been overlooked. Here, we investigated whether the ALDHs influence the cellular redox homeostasis.

View Article and Find Full Text PDF

Imazamox and glyphosate represent two classes of herbicides that inhibit the activity of acetohydroxyacid synthase in the branched-chain amino acid biosynthesis pathway and the activity of 5-enolpyruvylshikimate-3-phosphate synthase in the aromatic amino acid biosynthesis pathway, respectively. However, it is still unclear how imazamox and glyphosate lead to plant death. Both herbicides inhibit amino-acid biosynthesis and were found to induce ethanol fermentation in plants, but an Arabidopsis mutant deficient in alcohol dehydrogenase 1 was neither more susceptible nor more resistant than the wild-type to the herbicides.

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDH) are a family of enzymes that are involved in plant metabolism and contribute to aldehyde homeostasis to eliminate toxic aldehydes. The ALDH enzymes produce NADPH and NADH in their enzymatic reactions and thus contribute to balancing redox equivalents. Previous studies showed that Arabidopsis ALDH genes are expressed in response to high salinity, dehydration, oxidative stress, or heavy metals, suggesting important roles in environmental adaptation.

View Article and Find Full Text PDF

Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle.

View Article and Find Full Text PDF

Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A.

View Article and Find Full Text PDF

Aldehyde dehydrogenases metabolise a wide range of aliphatic and aromatic aldehydes, which become cytotoxic at high levels. Family 7 aldehyde dehydrogenase genes, often described as antiquitins or turgor-responsive genes in plants, are broadly conserved across all domains. Despite the high conservation of the plant ALDH7 proteins and their importance in stress responses, their regulation has not been investigated.

View Article and Find Full Text PDF

The Arabidopsis thaliana aldehyde dehydrogenase 3H1 gene (ALDH3H1; AT1G44170) belongs to family 3 of the plant aldehyde dehydrogenase superfamily. The full-length transcript of the corresponding gene comprises an open reading frame of 1583 bp and encodes a protein of 484 amino acid residues. Gene expression studies have shown that this transcript accumulates mainly in the roots of 4-week-old plants following abscisic acid, dehydration, and NaCl treatments.

View Article and Find Full Text PDF

Objective: To assess the genotype prevalence and the multiplicity of Plasmodium falciparum infections in the maritime region of Togo.

Methods: We enrolled 309 symptomatic individuals aged from 6 months to 15 years from Bè/Lomé and Tsévié, two malaria endemic zones. The number and the proportions of merozoite surface proteins 1, 2 and 3 genotypes in patients were determined using capillary electrophoresis genotyping.

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic.

View Article and Find Full Text PDF

Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases.

View Article and Find Full Text PDF