Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFWe successfully synthesized folic acid (FA) immobilized hydroxyapatite (HA) nanoparticles without using a mediative reagent (e.g., silane coupling agent), and the immobilization states were evaluated and discussed.
View Article and Find Full Text PDFIn the biomedical fields of bone regenerative therapy, the immobilization of proteins on the bioceramic particles to maintain their highly ordered structures is significantly important. In this review, we comprehensively discussed the importance of the specific surface layer, which can be called "non-apatitic layer", affecting the immobilization of proteins on particles such as hydroxyapatite and amorphous silica. It was suggested that the water molecules and ions contained in the non-apatitic layer can determine and control the protein immobilization states.
View Article and Find Full Text PDFThis review completely covers the various aspects of hydroxyapatite (HAp) nanoparticles and their role in different biological situations, and provides the surface and interface contents on (i) hydroxyapatite nanoparticles and their hybridization with organic molecules, (ii) surface designing of hydroxyapatite nanoparticles to provide their biocompatibility and photofunction, and (iii) coating technology of hydroxyapatite nanoparticles. In particular, we summarized how the HAp nanoparticles interact with the different ions and molecules and highlighted the potential for hybridization between HAp nanoparticles and organic molecules, which is driven by the interactions of the HAp nanoparticle surface ions with several functional groups of biological molecules. In addition, we highlighted the studies focusing on the interfacial interactions between the HAp nanoparticles and proteins for exploring the enhanced biocompatibility.
View Article and Find Full Text PDFAmorphous silica particles (ASPs) have been reported to exhibit bioactive properties and are becoming the focus of attention as bioceramics. However, their interactions with proteins in living organisms remain to be understood and need to be investigated in order to achieve wider applications. Our research group found that chlorine (Cl)-containing ASPs are useful for protein immobilization.
View Article and Find Full Text PDFAmorphous silica particles (ASPs) have low biotoxicity and are used in foodstuffs; however, the adsorption states of proteins on their surfaces have not yet been clarified. If the adsorption states can be clarified and controlled, then a wide range of biological and medical applications can be expected. The conventional amorphous silica particles have the problem of protein adsorption due to the strong interaction with their dense silanol groups and denaturation.
View Article and Find Full Text PDFHydroxyapatite (HA) particle, which is an inorganic component of biological hard tissues, is being applied as a bioceramic for biotechnology and medicine fields. However, early bone formation is difficult in the implantation of well-known stoichiometric HA into our body. To solve this problem, it is important to control the shapes and chemical compositions of the physicochemical properties of HA to be functionalized as the state similar to the biogenic bone.
View Article and Find Full Text PDFIn this review, the current status of the influence of added ions (i.e., SiO, CO, etc.
View Article and Find Full Text PDFA quartz crystal microbalance with dissipation (QCM-D) analysis was used to investigate fetal bovine serum (FBS) protein preadsorption on a hydroxyapatite (HAp) surface and the subsequent adhesion process of fibroblasts as compared with the case of oxidized poly(styrene) (PSox). The results showed that the preadsorption of FBS proteins on HAp promoted the subsequent initial cell adhesion ability. Moreover, the measured frequency (Δ) and dissipation shift (Δ) curves, Δ-Δ plots and viscoelastic analysis were used to study the initial cell adhesion process in real time.
View Article and Find Full Text PDFIn the biomedical field, there has been a requirement for developing theranostic nanomaterials with higher biosafety, leading to both diagnosis and therapy. Methylene blue (MB) is an organic dye with both photoluminescence (PL) and photosensitization abilities to generate singlet oxygen (O). However, MB easily loses its generation ability by hydrogen reduction in vivo or by forming aggregates.
View Article and Find Full Text PDFHydroxyapatite (HA) and citric acid (Cit)-coordinated HA (Cit/HA) nanoparticle films with different nanospaces were used to examine the nanospacial effect on the protein adsorption behavior and initial osteoblast-like cell adhesion ability through the premise of the stability and ionic dissociation characteristics of the films in biological solution. In particular, the Cit/HA nanoparticle film with a nanospace of 4.2 nm could realize massive and stereoscopic adsorption of proteins due to its larger specific surface area and smaller nanospace as compared with the case of the HA nanoparticle film.
View Article and Find Full Text PDFThe mechanism of highly-oriented collagen (Col) fibril arrays on rubbed polyimide (PI) films was investigated in order to understand the interfacial Col-PI interactions. It was found that the orientation of the surface functional groups of the rubbed PI films was most effectively controlled and optimized by the rubbing conditions. In particular, nano-grooves with a width of 100-600 nm and a depth of 2-10 nm were formed on the rubbed PI films at a rubbing strength of 2.
View Article and Find Full Text PDFMicromachines (Basel)
August 2022
The highly-oriented structures in biological tissues play an important role in determining the functions of the tissues. In order to artificially fabricate oriented nanostructures similar to biological tissues, it is necessary to understand the oriented mechanism and invent the techniques for controlling the oriented structure of nanobiomaterials. In this review, the oriented structures in biological tissues were reviewed and the techniques for producing highly-oriented nanobiomaterials by imitating the oriented organic/inorganic nanocomposite mechanism of the biological tissues were summarized.
View Article and Find Full Text PDFThe phase transition of Ca-deficient hydroxyapatite (CDHA) with citric acid (Cit) coordination was investigated. Cit promoted the substitution of K ions into CDHA to generate the HA phase. The K-doping increased the phase transition temperature of CDHA, providing the transition to β- and α-tricalcium phosphates at higher temperatures.
View Article and Find Full Text PDFBiomimetics (Basel)
July 2022
The mineralization process of the osseous layer, which is highly calcified , was successfully imitated by the immersion process of the decalcified fish scales in simplified simulated body fluid (SSBF). An alkali treatment was used to modify the native collagen in the decalcified Tilapia fish scale. After the alkali treatment, the mineralization was facilitated in SSBF.
View Article and Find Full Text PDFAutogenous bone and metallic implant grafting has been used to repair and regenerate bone defects. However, there are still many unresolved problems. It is suggested that bioceramic nanoparticles should be developed and designed to promote effective bone regeneration.
View Article and Find Full Text PDFBiological hydroxyapatite (HA) contains the different minor ions which favour its bio-reactivity in vivo. In this study, the preparation of HA particles containing both silicate and carbonate ions under the presence of sodium silicate was investigated, and the physicochemical properties were evaluated according to the contents and states of silicate and carbonate ions. The increment in the silicate ion reduced the crystallinity and expanded the crystalline size along with -axis.
View Article and Find Full Text PDFWe successfully synthesized methylene blue (MB)-immobilized hydroxyapatite (HM) nanoparticles by changing the initial P/Ca molar ratio. The immobilized amount of MB increased with increasing the initial P/Ca molar ratio from 0.6 to 4.
View Article and Find Full Text PDFSilicate-containing hydroxyapatite (SiHA) particles were synthesized and functionalized with polyethylene glycol-silane (PEG-silane) for clarifying the effect of the bioceramic surface hydration layer states on the collagen (Col) fibrillation degree. Plate-like SiHA particles were obtained containing the SiO ion inside and/or outside the particles. PEG-silane was successfully functionalized on SiHA particles, and the hydration layer and Col adlayer states on the particles were precisely investigated for exemplifying the importance of the water molecular states at the interface.
View Article and Find Full Text PDFHydroxyapatite (HA), as the main mineral component in hard tissues, has good biocompatibility. In particular, HA films are widely used as bioactive coatings for artificial bones and dental implants in biomedical fields. However, it is currently difficult to prepare a nanostructure-controlled HA film by a wet process for further applications.
View Article and Find Full Text PDFFunctional nanomaterials are one of the potential carriers for drug delivery, whereas there are many prerequisites for this purpose. The carrier should be monodispersed, be fluorescent, and have a proper nanostructure to keep/release drug molecules to achieve controlled release, although preparing a nanomaterial which fulfills all the demands is still very challenging. In this paper, we show the preparation of monodispersed nanoporous amorphous titania submicron particles with fluorescent property.
View Article and Find Full Text PDFFor the development of next-generation protein-based biosensor surfaces, it is important to understand how functional proteins, such as fibrinogen (FBG), interact with polar substrate surfaces in order to prepare highly sensitive points of medical care diagnostics. FBG, which is a fibrous protein with an extracellular matrix, has both positively and negatively charged regions on its 3-dimensional surface, which makes interpreting how it effectively binds to polarized surfaces challenging. In this study, single-crystal LiNbO (LNO) substrates that have surface charges were used to investigate the adsorption of FBG protruding polar fragments on the positively and negatively charged LNO surfaces.
View Article and Find Full Text PDFThe highly-oriented cylindrical mesoporous silica films were synthesized on the rubbing-treated polyimide by adjusting the molar ratio of the orientation-directing agent (Brij56) to the structure-directing agent (P123) as surfactants in the silica precursor solutions for guiding protein adsorption states. As a result, the diameter and the orientation degree of mesopores changed with the molar ratio of Brij56 to P123. The maximum orientation degree (93%) of cylindrical mesopores oriented in the direction perpendicular to the rubbing direction was observed when the molar ratio of Brij56 to P123 was 3.
View Article and Find Full Text PDF