Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity.
View Article and Find Full Text PDFUnlabelled: Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation.
View Article and Find Full Text PDFGenetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.
View Article and Find Full Text PDFThe fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.
View Article and Find Full Text PDFA complete and high-quality reference genome has become a fundamental tool for the study of functional, comparative, and evolutionary genomics. However, efforts to produce high-quality genomes for African taxa are lagging given the limited access to sufficient resources and technologies. The southern African dwarf chameleons (Bradypodion) are a relatively young lineage, with a large body of evidence demonstrating the highly adaptive capacity of these lizards.
View Article and Find Full Text PDFDown's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS.
View Article and Find Full Text PDFThe continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape.
View Article and Find Full Text PDFType I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15).
View Article and Find Full Text PDFHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome.
View Article and Find Full Text PDFThe increasing prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identify a set of antibodies against SARS-CoV-2 spike (S) proteins and characterize the structures of nAbs that recognize epitopes in the S1 subunit of the S glycoprotein. These structural studies reveal distinct binding modes for several antibodies, including the targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interact with angiotensin-converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1.
View Article and Find Full Text PDFThe increasing prevalence of SARS-CoV-2 variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly-reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identified a set of antibodies against SARS-CoV-2 spike (S) proteins and characterized the structures of nAbs that recognized epitopes in the S1 subunit of the S glycoprotein. These structural studies revealed distinct binding modes for several antibodies, including targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interacts with angiotensin- converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1.
View Article and Find Full Text PDFTANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1.
View Article and Find Full Text PDFThe SARS-CoV-2 variants replacing the first wave strain pose an increased threat by their potential ability to escape pre-existing humoral protection. An angiotensin converting enzyme 2 (ACE2) decoy that competes with endogenous ACE2 for binding of the SARS-CoV-2 spike receptor binding domain (S RBD) and inhibits infection may offer a therapeutic option with sustained efficacy against variants. Here, we used Molecular Dynamics (MD) simulation to predict ACE2 sequence substitutions that might increase its affinity for S RBD and screened candidate ACE2 decoys in vitro.
View Article and Find Full Text PDFT cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B-cell malignancies. In contrast to these highly potent CD19-targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen-binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo.
View Article and Find Full Text PDFType I IFN (IFN-I) is thought to be rapidly internalized and degraded following binding to its receptor and initiation of signaling. However, many studies report the persistent effects mediated by IFN-I for days or even weeks, both ex vivo and in vivo. These long-lasting effects are attributed to downstream signaling molecules or induced effectors having a long half-life, particularly in specific cell types.
View Article and Find Full Text PDFType I interferonopathies are monogenic disorders characterized by enhanced type I interferon (IFN-I) cytokine activity. Inherited USP18 and ISG15 deficiencies underlie type I interferonopathies by preventing the regulation of late responses to IFN-I. Specifically, USP18, being stabilized by ISG15, sterically hinders JAK1 from binding to the IFNAR2 subunit of the IFN-I receptor.
View Article and Find Full Text PDFISG15-deficient humans exhibit permanent, low-level expression of antiviral effectors that safely protect them from various viruses. Because the murine ISG15 axis functions differently, we identified animal models that recapitulate the human condition for the development of ISG15-targeting broad-spectrum antivirals. Canine, porcine, and rhesus macaque ISG15, such as human ISG15, stabilize USP18, a potent inhibitor of type I interferon (IFN)-I.
View Article and Find Full Text PDFWe present a rapid and high-throughput yeast and flow cytometry based method for predicting kinase inhibitor resistance mutations and determining kinase peptide substrate specificity. Despite the widespread success of targeted kinase inhibitors as cancer therapeutics, resistance mutations arising within the kinase domain of an oncogenic target present a major impediment to sustained treatment efficacy. Our method, which is based on the previously reported YESS system, recapitulated all validated BCR-ABL1 mutations leading to clinical resistance to the second-generation inhibitor dasatinib, in addition to identifying numerous other mutations which have been previously observed in patients, but not yet validated as drivers of resistance.
View Article and Find Full Text PDFType I IFNs (IFN-Is) are powerful cytokines. They provide remarkable protection against viral infections, but their indiscriminate production causes severe self-inflicted damage that can be lethal, particularly in early development. In humans, inappropriately high IFN-I levels caused by defects in the regulatory mechanisms that control IFN-I production and response result in clinical conditions known as type I interferonopathies.
View Article and Find Full Text PDFA microwave deposition technique for silanes, previously described for production of oleophobic fabrics, is adapted to provide a fabric support material that can be subsequently treated by dip coating. Dip coating with a sol preparation provides a supported porous layer on the fabric. In this case, the porous layer is a porphyrin functionalized sorbent system based on a powdered material that has been demonstrated previously for the capture and conversion of phosgene.
View Article and Find Full Text PDFVirtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center.
View Article and Find Full Text PDFAmphibian metamorphosis is driven by thyroid hormone (TH). We used prometamorphic tadpoles and a cell line of the African clawed frog (Xenopus laevis) to examine immediate effects of dioxin exposure on TH. Gene expression patterns suggest cross-talk between the thyroid hormone receptor (TR) and aryl hydrocarbon receptor (AHR) signaling pathways.
View Article and Find Full Text PDF