Publications by authors named "Tafintseva V"

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi and . Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever.

View Article and Find Full Text PDF

Vibrational spectroscopy methods such as mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopies have been shown to have great potential for in vivo biomedical applications, such as arthroscopic evaluation of joint injuries and degeneration. Considering that these techniques provide complementary chemical information, in this study, we hypothesized that combining the MIR, NIR, and Raman data from human osteochondral samples can improve the detection of cartilage degradation. This study evaluated 272 osteochondral samples from 18 human knee joins, comprising both healthy and damaged tissue according to the reference Osteoarthritis Research Society International grading system.

View Article and Find Full Text PDF

Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds.

View Article and Find Full Text PDF

The climate crisis further exacerbates the challenges for food production. For instance, the increasingly unpredictable growth of fungal species in the field can lead to an unprecedented high prevalence of several mycotoxins, including the most important toxic secondary metabolite produced by spp., i.

View Article and Find Full Text PDF

Objective: A prototype infrared attenuated total reflection (IR-ATR) laser spectroscopic system designed for classification of human cartilage tissue according to its histological health status during arthroscopic surgery is presented. Prior to real-world applications, this so-called osteoarthritis (OA) scanner has been tested at conditions revealing the challenges associated with complex sample matrices and the accordingly obtained sparse spectral datasets.

Methods: studies on human knee cartilage samples at different contact pressures (i.

View Article and Find Full Text PDF

Background: Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line.

View Article and Find Full Text PDF

Mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR), and Raman spectroscopy are all well-established analytical techniques in biomedical applications. Since they provide complementary chemical information, we aimed to determine whether combining them amplifies their strengths and mitigates their weaknesses. This study investigates the feasibility of the fusion of MIR, NIR, and Raman spectroscopic data for characterising articular cartilage integrity.

View Article and Find Full Text PDF

Infrared instruments with smaller and cost-effective components such as bandpass filters, single channel detectors, and laser-based light sources are being developed to provide cheaper and faster analysis of biological samples. Such instruments often provide measurements in form of sparse data, which include a collection of single-frequency channels or a collection of channels covering very narrow spectral ranges, called here multi-frequency channels. To keep costs low, the number of channels needs to be kept at a minimum.

View Article and Find Full Text PDF

Infrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy to detect cartilage degradation due to osteoarthritis and to validate the methodology with osteochondral human cartilage samples for future development towards clinical use.

Design: Cylindrical ( ​= ​4 ​mm) osteochondral samples ( ​= ​349) were prepared from nine human cadavers and measured with FTIR-ATR spectroscopy. Afterwards, the samples were assessed with Osteoarthritis Research Society International (OARSI) osteoarthritis cartilage histopathology assessment system and divided into two groups: 1) healthy (OARSI 0-2) and 2) osteoarthritic (OARSI 2.

View Article and Find Full Text PDF

Farmers, cereal suppliers and processors demand rapid techniques for the assessment of mould-associated contamination. Deoxynivalenol (DON) is among the most important toxins and related to human and animal diseases besides causing significant economic losses. Routine analytical techniques for the analysis of DON are either based on chromatographic or immunoanalytical techniques, which are time-consuming and frequently rely on hazardous consumables.

View Article and Find Full Text PDF

Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis.

View Article and Find Full Text PDF

Background: Although bovine milk is regarded as healthy and nutritious, its high content of saturated fatty acids (FA) may be harmful to cardiovascular health. Palmitic acid (C16:0) is the predominant saturated FA in milk with adverse health effects that could be countered by substituting it with higher levels of unsaturated FA, such as oleic acid (C18:1cis-9). In this work, we performed genome-wide association analyses for milk fatty acids predicted from FTIR spectroscopy data using 1811 Norwegian Red cattle genotyped and imputed to a high-density 777k single nucleotide polymorphism (SNP)-array.

View Article and Find Full Text PDF

Preclassification of raw infrared spectra has often been neglected in scientific literature. Separating spectra of low spectral quality, due to low signal-to-noise ratio, presence of artifacts, and low analyte presence, is crucial for accurate model development. Furthermore, it is very important for sparse data, where it becomes challenging to visually inspect spectra of different natures.

View Article and Find Full Text PDF

Extended multiplicative signal correction (EMSC) is a widely used preprocessing technique in infrared spectroscopy. EMSC is a model-based method favored for its flexibility and versatility. The model can be extended by adding constituent spectra to explicitly model-known analytes or interferents.

View Article and Find Full Text PDF

The aim of the study was to optimize preprocessing of sparse infrared spectral data. The sparse data were obtained by reducing broadband Fourier transform infrared attenuated total reflectance spectra of bovine and human cartilage, as well as of simulated spectral data, comprising several thousand spectral variables into datasets comprising only seven spectral variables. Different preprocessing approaches were compared, including simple baseline correction and normalization procedures, and model-based preprocessing, such as multiplicative signal correction (MSC).

View Article and Find Full Text PDF

The use of technologies for measurements of health parameters of individual cows may ensure early detection of diseases and maximization of individual cow and herd potential. In the present study, dry-film Fourier transform infrared spectroscopy (FTIR) was evaluated for the purpose of detecting and quantifying milk components during cows' lactation. This was done in order to investigate if these systematic changes can be used to identify cows experiencing subclinical ketosis.

View Article and Find Full Text PDF

The identification of the most competent embryos for transfer to the uterus constitutes the main challenge of fertilization (IVF). We established a metabolomic-based approach by applying Fourier transform infrared (FTIR) spectroscopy on 130 samples of 3-day embryo culture supernatants from 26 embryos that implanted and 104 embryos that failed. On examining the internal structure of the data by unsupervised multivariate analysis, we found that the supernatant spectra of nonimplanted embryos constituted a highly heterogeneous group.

View Article and Find Full Text PDF

Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium).

View Article and Find Full Text PDF

Objective: Joint injuries may lead to degeneration of cartilage tissue and initiate development of posttraumatic osteoarthritis. Arthroscopic surgeries can be used to treat joint injuries, but arthroscopic evaluation of articular cartilage quality is subjective. Fourier transform infrared spectroscopy combined with fiber optics and attenuated total reflectance crystal could be used for the assessment of tissue quality during arthroscopy.

View Article and Find Full Text PDF

The objective of the study was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) analysis of milk samples to predict body energy status and related traits (energy balance (EB), dry matter intake (DMI) and efficient energy intake (EEI)) in lactating dairy cows. The data included 2371 milk samples from 63 Norwegian Red dairy cows collected during the first 105 days in milk (DIM). To predict the body energy status traits, calibration models were developed using Partial Least Squares Regression (PLSR).

View Article and Find Full Text PDF

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize.

View Article and Find Full Text PDF

The biomass of a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of .

View Article and Find Full Text PDF

Infrared spectroscopy of cells and tissues is prone to Mie scattering distortions, which grossly obscure the relevant chemical signals. The state-of-the-art Mie extinction extended multiplicative signal correction (ME-EMSC) algorithm is a powerful tool for the recovery of pure absorbance spectra from highly scatter-distorted spectra. However, the algorithm is computationally expensive and the correction of large infrared imaging datasets requires weeks of computations.

View Article and Find Full Text PDF

Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically.

View Article and Find Full Text PDF