Publications by authors named "Tafadzwa Mlambo"

Introduction: Very little is known about the role of macrophages as immune mediators during natural HIV infection. Humanized mice are an extremely valuable model for studying HIV pathogenesis. However, the presence of murine mononuclear phagocytes in these models represents a significant limitation for studying their human counterpart.

View Article and Find Full Text PDF

Targeted modulation of gene expression represents a valuable approach to understand the mechanisms governing gene regulation. In a therapeutic context, it can be exploited to selectively modify the aberrant expression of a disease-causing gene or to provide the target cells with a new function. Here, we have established a novel platform for achieving precision epigenome editing using designer epigenome modifiers (DEMs).

View Article and Find Full Text PDF

The development of tools which allow for the precise alterations of the epigenetic landscape in desired genomic locations presents exciting possibilities toward further understanding how gene expression is regulated and opportunities to harness these properties for therapeutic purposes. In contrast to gene knockout strategies, targeted epigenome modifications, such as editing of DNA methylation, can mediate gene expression modulation without changing the genomic sequence. Thereby, in a therapeutic context, this strategy may offer a safer route as compared to gene disruption using designer nucleases that, to reach high efficiencies, relies on the occurrence of random mutations to inactivate the target gene.

View Article and Find Full Text PDF

Targeted gene editing with designer nucleases has become increasingly popular. The most commonly used designer nuclease platforms are engineered meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and the clustered regularly interspaced short palindromic repeat/Cas9 system. These powerful tools have greatly facilitated the generation of plant and animal models for basic research, and harbor an enormous potential for applications in biotechnology and gene therapy.

View Article and Find Full Text PDF

In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity.

View Article and Find Full Text PDF