Publications by authors named "Taewoong Lee"

Lithium-Sulfur Batteries (LSBs) have attracted significant attention as promising next-generation energy storage systems. However, the commercial viability of LSBs have been hindered due to lithium polysulfides (LiPSs) shuttle effect, resulting in poor cycling stability and low sulfur utilization. To address this issue, herein, the study prepares a sulfur host consisting of micro/mesopore-enriched activated carbonaceous materials with ultrahigh surface area using organic pigment via facile one-step activation.

View Article and Find Full Text PDF

Redox-active organic compounds gather significant attention for their potential application as electrodes in alkali ion batteries, owing to the structural versatility, environmental friendliness, and cost-effectiveness. However, their practical applications of such compounds are impeded by insufficient active sites with limited capacity, dissolution in electrolytes, and sluggish kinetics. To address these issues, a naphthol group-containing triarylamine polymer, namely poly[6,6'-(phenylazanediyl)bis(naphthol)] (poly(DNap-OH)) is rationally designed and synthesized, via oxidative coupling polymerization.

View Article and Find Full Text PDF

Carbonaceous materials have attracted as prospective anodes for rechargeable alkali-ion batteries. In this study, C.I.

View Article and Find Full Text PDF

We synthesized a new poly(triphenylamine), having a hyperbranched structure, and employed it in lithium-ion batteries as an organic cathode material. Two types of monomers were prepared with hydroxyl groups and nitro leaving groups, activated by a trifluoromethyl substituent, and then polymerized via the nucleophilic aromatic substitution reaction. The reactivity of the monomers differed depending on the number of hydroxyl groups and the AB type monomer with one hydroxyl group successfully produced poly(triphenylamine).

View Article and Find Full Text PDF

Lithium-sulfur batteries are considered as attractive candidates for next-generation energy storage systems originating from their high theoretical capacity and energy density. However, the severe shuttling of behavior caused by the dissolution of lithium polysulfide intermediates during cycling remains a challenge for practical applications. Herein, porous carbon materials co-doped with nitrogen and sulfur atoms were prepared through a facile hydrothermal reaction of graphene oxide and methylene blue to obtain a suitable host structure for regulating the lithium polysulfide shuttling behavior.

View Article and Find Full Text PDF

The fluctuation-dissipation theorem (FDT) is a simple yet powerful consequence of the first-order differential equation governing the dynamics of systems subject simultaneously to dissipative and stochastic forces. The linear learning dynamics, in which the input vector maps to the output vector by a linear matrix whose elements are the subject of learning, has a stochastic version closely mimicking the Langevin dynamics when a full-batch gradient descent scheme is replaced by that of a stochastic gradient descent. We derive a generalized FDT for the stochastic linear learning dynamics and verify its validity among the well-known machine learning data sets such as MNIST, CIFAR-10, and EMNIST.

View Article and Find Full Text PDF

The Kori-1 nuclear power plant has been permanently shut down since 2017, and its major structures, systems, and components are currently planned to be dismantled according to the final decommissioning plan. To protect dismantling workers from external radiation exposure dose during decommissioning, we propose a dose reduction method involving dual-layered Pb-free shielding. Based on the Monte Carlo method, the performance of the abovementioned method and various types of materials are optimized and estimated in terms of the equivalent dose rate and radiation shielding rate.

View Article and Find Full Text PDF

In this study, the performance of a Compton Single Photon Emission Computed Tomography (SPECT) imager when in vivo monitoring the position and distribution of Ac radionuclide in targeted alpha therapy (TAT) was evaluated. When Ac radionuclide, which emits various γ-rays (218 and 440 keV), is used in TAT, both the photoelectric and Compton scattering events can be used for image reconstruction. Moreover, all information pertaining to the various γ-rays of the Ac radionuclide can be individually or simultaneously utilized in the reconstructed image.

View Article and Find Full Text PDF

The performance of a virtual (6 × 6 × 15 mm) Frisch-grid cadmium zinc telluride detector for the detection of contraband with 14 MeV neutron-activation prompt γ-rays was studied using Monte Carlo simulations. A sensitive nonlinear iterative peak clipping algorithm was applied to the spectra to rapidly and easily identify the prompt γ-ray peaks. This algorithm showed better performance than directly using the original spectra.

View Article and Find Full Text PDF

Mechanical collimation with photon absorption and electronic collimation using Compton scattering are combined to form a cubic gamma camera with an active collimator. The collimator is made active by constructing it with a uniformly redundant array of patterned Bi4Ge3O12 (BGO) scintillators, which not only attenuates incident radiations but also detects scattered radiation, in a gamma-camera consisting of and five planar CsI(Na) scintillators. The entire module forms a cubic structure that generates images on the basis of radiation interactions from every direction.

View Article and Find Full Text PDF

We investigated graphene-oxide-(GO-) coupled surface plasmon resonance (SPR) detection sensitivity for sandwiched antigen-antibody interaction between human and antihuman immunoglobulin G molecules. GO was prepared in a Langmuir-Blodgett solution on gold and dielectric surfaces. Theoretical and experimental data suggest that an increased dielectric spacer thickness reduces resonance shifts for GO-coupled SPR detection as dielectric properties of GO appear to prevail.

View Article and Find Full Text PDF

The performance of a specialized dual γ-ray imager using both mechanical and electronic collimation was evaluated by Monte Carlo simulation (MCNP5). The dual imager consisted of an active collimator and a planar detector that were made from scintillators. The active collimator served not only as a coded aperture for mechanical collimation but also as a first detector for electronic collimation.

View Article and Find Full Text PDF