Purpose: Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function.
View Article and Find Full Text PDFScope: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed.
Methods And Results: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.
The gut microbiota, which includes Akkermansia muciniphila, is known to modulate energy metabolism, glucose tolerance, immune system maturation and function in humans. Although A. muciniphila is correlated with metabolic diseases and its beneficial causal effects were reported on host metabolism, the molecular mechanisms involved have not been identified.
View Article and Find Full Text PDFIn this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown AlO (ALD AlO) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in AlO were artificially modulated during the ALD process using different oxidants, such as HO and O (HO-AlO and O-AlO, respectively). When hydrogen was incorporated into the HO-AlO-passivated TFT, a large negative shift in (ca.
View Article and Find Full Text PDFKRAS-mutant non-small cell lung cancer (NSCLC) is a major lung cancer subtype that leads to many cancer-related deaths worldwide. Although numerous studies on KRAS-mutant type NSCLC have been conducted, new oncogenic or tumor suppressive genes need to be detected because a large proportion of NSCLC patients does not respond to currently used therapeutics. Here, we show the tumor-promoting function of a cell cycle-related protein, PIERCE1, in KRAS-mutant NSCLC.
View Article and Find Full Text PDFImmunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as Neo cassettes and their characterization. By eliminating any possible effects of adding a Neo cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene.
View Article and Find Full Text PDFCellular protein homeostasis is maintained by two major degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Until recently, the UPS and autophagy were considered to be largely independent systems targeting proteins for degradation in the proteasome and lysosome, respectively. However, the identification of crucial roles of molecular players such as ubiquitin and p62 in both of these pathways as well as the observation that blocking the UPS affects autophagy flux and vice versa has generated interest in studying crosstalk between these pathways.
View Article and Find Full Text PDFSemiconductor integrated circuit chip industries have been striving to introduce porous ultralow-k (ULK) dielectrics into the multilevel interconnection process in order to improve their chip operation speed by reducing capacitance along the signal path. To date, however, highly porous ULK dielectrics (porosity >40%, dielectric constant (k) <2.4) have not been successfully adopted in real devices because the porous nature causes many serious problems, including noncontinuous barrier deposition, penetration of the barrier metal, and reliability issues.
View Article and Find Full Text PDFThere have been growing concerns regarding the limited fossil resources and global climate changes resulting from modern civilization. Currently, finding renewable alternatives to conventional petrochemical processes has become one of the major focus areas of the global chemical industry sector. Since over 4.
View Article and Find Full Text PDFThe evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 μm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 μm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm.
View Article and Find Full Text PDFUnlabelled: Singlet oxygen ((1)O(2)) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by (1)O(2), and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from (1)O(2) is by inducing a transcriptional response controlled by ChrR, an anti-σ factor which releases an alternative sigma factor, σ(E), in the presence of (1)O(2).
View Article and Find Full Text PDFWe report on the nanosheet-thickness effects on the performance of top-gate MoS(2) field-effect transistors (FETs), which is directly related to the MoS(2) dielectric constant. Our top-gate nanosheet FETs with 40 nm thin Al(2)O(3) displayed at least an order of magnitude higher mobility than those of bottom-gate nanosheet FETs with 285 nm thick SiO(2), benefiting from the dielectric screening by high-k Al(2)O(3). Among the top-gate devices, the single-layered FET demonstrated the highest mobility of ∼170 cm(2) V(-1) s(-1) with 90 mV dec(-1) as the smallest subthreshold swing (SS) but the double- and triple-layered FETs showed only ∼25 and ∼15 cm(2) V(-1) s(-1) respectively with the large SS of 0.
View Article and Find Full Text PDFWe report on the fabrication of top-gate phototransistors based on a few-layered MoS(2) nanosheet with a transparent gate electrode. Our devices with triple MoS(2) layers exhibited excellent photodetection capabilities for red light, while those with single- and double-layers turned out to be quite useful for green light detection. The varied functionalities are attributed to energy gap modulation by the number of MoS(2) layers.
View Article and Find Full Text PDFIn the photosynthetic bacterium Rhodobacter sphaeroides, a transcriptional response to the reactive oxygen species singlet oxygen ((1)O(2)) is mediated by ChrR, a zinc metalloprotein that binds to and inhibits the activity of the alternative σ factor σ(E). We provide evidence that (1)O(2) promotes the dissociation of σ(E) from ChrR to activate transcription in vivo. To identify what is required for (1)O(2) to promote the dissociation of σ(E)/ChrR complexes, we analyzed the in vivo properties of variant ChrR proteins with amino acid changes in conserved residues of the C-terminal cupin-like domain (ChrR-CLD).
View Article and Find Full Text PDFIn Escherichia coli, glucose-dependent transcriptional induction of genes encoding a variety of sugar-metabolizing enzymes and transport systems is mediated by the phosphorylation state-dependent interaction of membrane-bound enzyme IICB(Glc) (EIICB(Glc)) with the global repressor Mlc. Here we report the crystal structure of a tetrameric Mlc in a complex with four molecules of enzyme IIB(Glc) (EIIB), the cytoplasmic domain of EIICB(Glc). Each monomer of Mlc has one bound EIIB molecule, indicating the 1:1 stoichiometry.
View Article and Find Full Text PDFExpression of the Escherichia coli sdhCDAB operon encoding the succinate dehydrogenase complex is regulated in response to growth conditions, such as anaerobiosis and carbon sources. An anaerobic repression of sdhCDAB is known to be mediated by the ArcB/A two-component system and the global Fnr anaerobic regulator. While the cAMP receptor protein (CRP) and Cra (formerly FruR) are known as key mediators of catabolite repression, they have been excluded from the glucose repression of the sdhCDAB operon.
View Article and Find Full Text PDFBecause the phosphoenolpyruvate:sugar phosphotransferase system plays multiple regulatory roles in addition to the phosphorylation-coupled transport of many sugars in bacteria, synthesis of its protein components is regulated in a highly sophisticated way. Thus far, the cAMP receptor protein (CRP) complex and Mlc are known to be the major regulators of ptsHIcrr and ptsG expression in response to the availability of carbon sources. In this report, we performed ligand fishing experiments by using the promoters of ptsHIcrr and ptsG as bait to find out new factors involved in the transcriptional regulation of the phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli, and we found that the anaerobic regulator ArcA specifically binds to the promoters.
View Article and Find Full Text PDFThe bacterial phosphoenolpyruvate:sugar phosphotransferase system regulates a variety of physiological processes as well as effecting sugar transport. The crr gene product (enzyme IIA(Glc) (IIA(Glc))) mediates some of these regulatory phenomena. In this report, we characterize a novel IIA(Glc)-binding protein from Escherichia coli extracts, discovered using ligand-fishing with surface plasmon resonance spectroscopy.
View Article and Find Full Text PDF