Publications by authors named "Taewoo Lee"

High-efficiency particulate air filters are widely used for indoor air purification. Spent filter waste (SFW), which can trap infectious and toxic substances, is primarily treated via incineration. This method causes environmental concerns, particularly regarding the generation of carbon dioxide (CO) and other air pollutants.

View Article and Find Full Text PDF

Despite the growing interest in biomass as a carbon-neutral resource, technical challenges have limited its comprehensive utilization. Pyrolysis has emerged as a promising method for reducing the carbon footprint by more effectively valorizing carbon in biomass. This study investigated the use of carbon dioxide (CO) in the pyrolysis of pine cone (PC), a lignocellulosic biomass.

View Article and Find Full Text PDF

Neuromorphic electronics use neural models in hardware to emulate brain-like behavior, and provide power-efficient, extremely compact, and massively-parallel processing, so they are ideal candidates for next-generation information-processing units. However, traditional rigid neuromorphic devices are limited by their unavoidable mechanical and geometrical mismatch with human tissues or organs. At the same time, the rapid development of these electronic devices has generated a large amount of electronic waste, thereby causing severe ecological problems.

View Article and Find Full Text PDF

Polycrystalline perovskite light-emitting diodes (PeLEDs) have shown great promise with high efficiency and easy processability. However, PeLEDs using single-cation polycrystalline perovskite emitters have demonstrated low efficiency due to defects within the grains and at the interfaces between the perovskite layer and the charge injection contact. Thus, simultaneous defect engineering of perovskites to suppress exciton loss within the grains and at the interfaces is crucial for achieving high efficiency in PeLEDs.

View Article and Find Full Text PDF

A weak van der Waals (vdW) force in layered materials enables their isolation into thin flakes through mechanical exfoliation while sustaining their intrinsic electronic and optical properties. Here, we introduce a universal roll-printing method capable of producing vdW multilayer films on wafer-to-meter scale. This process uses sequential exfoliation and transfer of layered materials from the powder sources to target substrates through a repeated rolling of a cylindrical metal drum.

View Article and Find Full Text PDF

Metal halide perovskite light-emitting diodes (PeLEDs) have exceptional color purity but designs that emit deep-blue color with high efficiency have not been fully achieved and become more difficult in the thin film of confined perovskite colloidal quantum dots (PeQDs) due to particle interaction. Here it is demonstrated that electronic coupling and energy transfer in PeQDs induce redshift in the emission by PeQD film, and consequently hinder deep-blue emission. To achieve deep-blue emission by avoiding electronic coupling and energy transfer, a QD-in-organic solid solution is introduced to physically separate the QDs in the film.

View Article and Find Full Text PDF

In the Fourth Industrial Revolution, as the connection between objects and people becomes increasingly important, interest in wearable optoelectronic device-based medical diagnosis is on the rise. Pulse oximetry sensors based on a fiber platform, which is the smallest unit of clothing, could be considered an attractive candidate for this application. In this study, red and green quantum-dot light-emitting fibers (QDLEFs) based on a 250 μm-diameter 1-dimensional fiber were successfully implemented, achieving high current efficiencies of approximately 22.

View Article and Find Full Text PDF

Reducing the size of perovskite crystals to confine excitons and passivating surface defects has fueled a significant advance in the luminescence efficiency of perovskite light-emitting diodes (LEDs). However, the persistent gap between the optical limit of electroluminescence efficiency and the photoluminescence efficiency of colloidal perovskite nanocrystals (PeNCs) suggests that defect passivation alone is not sufficient to achieve highly efficient colloidal PeNC-LEDs. Here, we present a materials approach to controlling the dynamic nature of the perovskite surface.

View Article and Find Full Text PDF

Synthesis of perovskites that exhibit pure-blue emission with high photoluminescence quantum yield (PLQY) in both nanocrystal solutions and nanocrystal-only films presents a significant challenge. In this work, a room-temperature method is developed to synthesize ultrasmall, monodispersed, Sn-doped methylammonium lead bromide (MAPb SnBr) perovskite nanoplatelets (NPLs) in which the strong quantum confinement effect endows pure blue emission (460 nm) and a high quantum yield (87%). Post-treatment using n-hexylammonium bromide (HABr) repaired surface defects and thus substantially increased the stability and PLQY (80%) of the NPL films.

View Article and Find Full Text PDF

Plastic-based insulation materials have been widely employed owing to their exceptional durability, cost-effectiveness, low weight, and low thermal conductivity. Nevertheless, the disposal of the insulation material waste (IMW) within construction waste and its recycling and recovery are challenging. Meanwhile, landfilling or incineration methods can release toxic chemicals into the environment.

View Article and Find Full Text PDF

While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection.

View Article and Find Full Text PDF

Electrolyte-gated organic synaptic transistors (EGOSTs) can have versatile synaptic plasticity in a single device, so they are promising as components of neuromorphic implants that are intended for use in neuroprosthetic electronic nerves that are energy-efficient and have simple system structure. With the advancement in transistor properties of EGOSTs, the commercialization of neuromorphic implants for practical long-term use requires consistent operation, so they must be stable in vivo. This requirement demands strategies that maintain electronic and ionic transport in the devices while implanted in the human body, and that are mechanically, environmentally, and operationally stable.

View Article and Find Full Text PDF

Although biomass is carbon-neutral, its use as a primary feedstock faces challenges arising from inconsistent supply chains. Therefore, it becomes crucial to explore alternatives with reliable availability. This study proposes a strategic approach for the thermochemical valorization of food processing waste, which is abundantly generated at single sites within large-scale processing plants.

View Article and Find Full Text PDF

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics.

View Article and Find Full Text PDF

The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality.

View Article and Find Full Text PDF

Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability.

View Article and Find Full Text PDF

Polymer stabilized cholesteric liquid crystals (PSCLCs) are electrically reconfigurable reflective elements. Prior studies have hypothesized and indirectly confirmed that the electro-optic response of these composites is associated with the electrically mediated distortion of the stabilizing polymer network. The proposed mechanism is based on the retention of structural chirality in the polymer stabilizing network, which upon deformation is spatially distorted, which accordingly affects the pitch of the surrounding low molar-mass liquid crystal host.

View Article and Find Full Text PDF

This paper introduces an efficient barrier model for enhancing smart building surveillance in harsh environment with thin walls and structures. After the main research problem of minimizing the total number of wall-recognition surveillance barriers, we propose two distinct algorithms, Centralized Node Deployment and Adaptation Node Deployment, which are designed to address the challenge by strategic placement of surveillance nodes within the smart building. The Centralized Node Deployment aligns nodes along the thin walls, ensuring consistent communication coverage and effectively countering potential disruptions.

View Article and Find Full Text PDF

Hemostatic devices are critical for managing emergent severe bleeding. With the increased use of anticoagulant therapy, there is a need for next-generation hemostats. We rationalized that a hemostat with an architecture designed to increase contact with blood, and engineered from a material that activates a distinct and undrugged coagulation pathway can address the emerging need.

View Article and Find Full Text PDF

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising new light source for displays. The development roadmap for commercializing PeLEDs should include a tandem device structure, specifically by stacking a thin nanocrystal PeLED unit and an organic light-emitting diode unit, which can achieve a vivid and efficient tandem display; however, simply combining light-emitting diodes with different characteristics does not guarantee both narrowband emission and high efficiency, as it may cause a broadened electroluminescence spectra and a charge imbalance. Here, by conducting optical simulations of the hybrid tandem (h-tandem) PeLED, we have discovered a crucial optical microcavity structure known as the h-tandem valley, which enables the h-tandem PeLED to emit light with a narrow bandwidth.

View Article and Find Full Text PDF
Article Synopsis
  • Monolayer transition metal dichalcogenides (TMDs) are gaining interest for optoelectronic applications due to their direct band gap and high quantum yield, but face challenges like low external quantum efficiencies caused by non-radiative charged excitons.
  • This study demonstrates electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe) light-emitting transistors (LETs) by using a local graphene gate to balance electron and hole injection.
  • The balanced injection leads to a strong EL with an external quantum efficiency (EQE) of approximately 8.2% at room temperature, showcasing a method to enhance EQE in 2D light-emitting devices and
View Article and Find Full Text PDF

Recent studies have focused on exploring the potential of resistive random-access memory (ReRAM) utilizing halide perovskites as novel data storage devices. This interest stems from its notable attributes, including a high ON/OFF ratio, low operating voltages, and exceptional mechanical properties. Nevertheless, there have been reports indicating that memory systems utilizing halide perovskites encounter certain obstacles pertaining to their stability and dependability, mostly assessed through endurance and retention time.

View Article and Find Full Text PDF

This study investigated the conversion of agricultural biomass waste (specifically, spent mushroom substrate) into syngas via pyrolysis. Carbon dioxide was used to provide a green/sustainable feature in the pyrolysis process. All the experimental data highlight the mechanistic role of carbon dioxide (CO) in the process, demonstrated by the enhanced carbon monoxide (CO) yield from pyrolysis under CO.

View Article and Find Full Text PDF

Perovskite light emitters can realize bright, stable and efficient light-emitting diodes through a molecular design strategy that enables strong endurance on high-current operation.

View Article and Find Full Text PDF