Publications by authors named "Taewon Ha"

Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) are harmful chemicals that can cause cancer and are found in the environment, especially in soil.
  • A study looked at the risks of PAH pollution in five areas of Korea, finding that Gunsan had moderate to high ecological and cancer risks due to pollution from the air.
  • The research suggested that Korea needs to take action to reduce the release of these harmful substances, especially in Gunsan where the pollution levels are concerning.
View Article and Find Full Text PDF

Solution-based direct patterning on an elastomer substrate with meniscus-dragging deposition (MDD) enables fabrication of very thin carbon nanotube (CNT) layers in the nanometer scale (80-330 nm). To fabricate the CNT pattern with CNT solution, contact angle, electrical variation, mechanical stress, and surface cracks of elastomer substrate were analyzed to identify the optimal conditions of O treatment (treatment for 30 s with RF power of 50 W in O atmosphere of 50 sccm) and mixture ratio between Ecoflex and polydimethylsiloxane (PDMS) (Ecoflex:PDMS = 5:1). The type of mask for patterning of the CNT layer was determined through quantitative analysis for sharpness and uniformity of the fabricated CNT pattern.

View Article and Find Full Text PDF

We develop a facile route to the scalable fabrication of flexible reattachable ionomer nanopatterns (RAINs) by continuous nanoinscribing and low-temperature roll imprinting, which are repeatedly attachable to and detachable from arbitrarily shaped surfaces. First, by sequentially performing continuous nanoinscribing over a polymer substrate along the multiple directions, we readily create the multidimensional nanopattern, which otherwise demands complex nanofabrication. After its transfer to an elastomer pad for use as a soft nanoimprinting stamp, we then conduct a low-temperature roll imprinting of the ionomer film to fabricate a flexible and highly transparent RAIN.

View Article and Find Full Text PDF

Dielectrophoresis- (DEP-) based separation method between a protein, amyloid beta 42, and polystyrene (PS) beads in different microholes was demonstrated for enhancement of performance for bead-based fluorescent sensor. An intensity of ∇|| was relative to a diameter of a microhole, and the diameters of two microholes for separation between the protein and PS beads were simulated to 3 m and 15 m, respectively. The microholes were fabricated by microelectromechanical systems (MEMS).

View Article and Find Full Text PDF

Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated.

View Article and Find Full Text PDF

Thin film transparent oxides have attracted considerable attention over the last few decades for transparent electronic applications, such as flat panel displays, solar cells, touch-pads, and mobile devices. Metallic doped InZnO (IZO) films have been suggested for the transparent layer exhibiting semiconducting or metallic properties because of its controllable mobility and excellent electrical properties, but they show a degradation of the electrical performance under bending conditions. This study assessed Ni doped IZO (NIZO) films as a flexible transparent electrode on different flexible transparent substrates for flexible electronic applications.

View Article and Find Full Text PDF

Loss of heterozygosity (LOH) has been established as an important genetic mechanism giving rise to malignant neoplasia. The mechanism of LOH has been shown to cause basal cell carcinoma and malignant melanoma as well as other types of skin cancer. A few studies on LOH in sporadic keratoacanthomas have been reported.

View Article and Find Full Text PDF