Halide perovskites have emerged as promising materials for various optoelectronic devices because of their excellent optical and electrical properties. In particular, halide perovskite quantum dots (PQDs) have garnered considerable attention as emissive materials for light-emitting diodes (LEDs) because of their higher color purities and photoluminescence quantum yields compared to conventional inorganic quantum dots (CdSe, ZnSe, ZnS, etc.).
View Article and Find Full Text PDFThe micropipette, pencil-shaped with an aperture diameter of a few micrometers, is a potentially promising tool for the three-dimensional (3D) printing of individual microstructures based on its capability to deliver low volumes of nanomaterial solution on a desired spot resulting in micro/nanoscale patterning. Here, we demonstrate a direct 3D printing technique in which a micropipette with a cadmium selenide (CdSe) quantum dot (QD) solution is guided by an atomic force microscope with no electric field and no piezo-pumping schemes. We define the printed CdSe QD wires, which are a composite material with a QD-liquid coexistence phase, by using photoluminescence and Raman spectroscopy to analyze their intrinsic properties and additionally demonstrate a means of directional falling.
View Article and Find Full Text PDF