This study aims to develop maximal voluntary isometric contraction (MVIC) and submaximal voluntary isometric contraction (subMVIC) methods and to assess the reliability of the developed methods for in-bed healthy individuals and patients with subacute stroke. The electromyography (EMG) activities from the lower-limb muscles including the tensor fascia lata (TFL), rectus femoris (RF), tibialis anterior (TA), and gastrocnemius (GC) on both sides were recorded during MVIC and subMVIC using surface EMG sensors in 20 healthy individuals and 20 subacute stroke patients. In inter-trial reliability, both MVIC and subMVIC methods demonstrated excellent reliability for all the measured muscles at baseline and follow-up evaluations in both healthy individuals and stroke patients.
View Article and Find Full Text PDFNanotechnology has facilitated the development of active food packaging systems with functions that could not be achieved by their traditional counterparts. Such smart and active systems can improve the shelf life of perishable products and overcome major bottlenecks associated with the fabrication of safe and environmentally friendly food packaging systems. Herein, we used a plasma-enabled surface modification strategy to fabricate biodegradable and flexible nanoporous polycaprolactone-based (FNP) films for food packaging systems.
View Article and Find Full Text PDFBackground: The healing of large critical-sized bone defects remains a clinical challenge in modern orthopedic medicine. The current gold standard for treating critical-sized bone defects is autologous bone graft; however, it has critical limitations. Bone tissue engineering has been proposed as a viable alternative, not only for replacing the current standard treatment, but also for producing complete regeneration of bone tissue without complex surgical treatments or tissue transplantation.
View Article and Find Full Text PDFBiomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated.
View Article and Find Full Text PDF