Publications by authors named "Taeko Soma-Nagae"

Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents.

View Article and Find Full Text PDF

Endocrine therapy is the standard treatment for advanced prostate cancer; however, relapse occurs in most patients with few treatment options available after recurrence. To overcome this therapeutic hurdle, the identification of new molecular targets is a critical issue. The capability to proliferate in three-dimensional (3D) conditions is a characteristic property of cancer cells.

View Article and Find Full Text PDF

The lysosomal adaptor protein p18 is an essential anchor of a scaffolding complex for the mTORC1 and MAPK pathways, which play crucial roles in controlling cell growth and energy homeostasis. To elucidate the in vivo function of the p18-mediated pathway, we conditionally ablated p18 in the mouse epidermis. Mutant mice were born with severe defects in formation of the stratum corneum and died within 12 h after birth due to dehydration caused by loss of skin barrier function.

View Article and Find Full Text PDF

The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown.

View Article and Find Full Text PDF

Expression and function of megalin, an endocytic receptor in proximal tubule cells (PTCs), are reduced in diabetic nephropathy, involved in the development of proteinuria/albuminuria. Lipopolysaccharide (LPS) is chronically increased in diabetic sera, by the mechanism called metabolic endotoxemia. We investigated low-level LPS-mediated signaling that regulates megalin expression in immortalized rat PTCs (IRPTCs).

View Article and Find Full Text PDF