In this study, experiments were performed to characterize further the pathways responsible for neuronal death induced by endoplasmic reticulum (ER) stress in cultured hippocampal neurons (HPN) and cerebellar granule neurons (CGN) using tunicamycin (TM) and amyloid beta-peptide (Abeta). Exposure of HPN to Abeta or TM resulted in a time-dependent increase in the expression of 78-kDa glucose-regulated protein (GRP78) and caspase-12, an ER-resident caspase. In contrast, in CGN, although a drastic increase in the expression of GRP78 was found as was the case in HPN, no up-regulation of caspase-12 was detected.
View Article and Find Full Text PDFAged garlic extract (AGE) contains several neuroactive compounds, including S-allyl-L-cysteine (SAC) and allixin. We characterized cell death induced by amyloid beta-protein (Abeta), 4-hydroxynonenal (HNE), tunicamycin, an endoplasmic reticulum (ER) stressor, or trophic factor deprivation, and investigated whether and how SAC could prevent this in nerve growth factor (NGF)-differentiated PC12 cells, a model of neuronal cells. Exposure of the cells to amyloid beta-protein(1-40) (Abeta(1-40)) decreased the extent of [3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction activity and loss of neuronal integrity, but these effects were not prevented by Ac-DEVD-CHO, a caspase-3 inhibitor.
View Article and Find Full Text PDF