Int J Radiat Oncol Biol Phys
February 2022
Purpose: Compared with photon cranial radiation therapy (X-CRT), proton cranial radiation therapy (P-CRT) offers potential advantages in limiting radiation-induced sequalae in the treatment of pediatric brain tumors. This study aims to identify cognitive, functional magnetic resonance and positron emission tomography imaging markers and molecular differences between the radiation modalities.
Methods And Materials: Juvenile rats received a single faction of 10 Gy (relative biological effectiveness-weighted dose) delivered with 6 MV X-CRT or at the midspread out Bragg peak of a 100 MeV P-CRT beam.
Purpose: Cranial radiation therapy (CRT) is a common treatment for pediatric brain tumor patients. However, side effects include significant neurobehavioral dysfunction in survivors. This dysfunction may in part be caused by inflammation, including increased production of tumor necrosis factor alpha (TNFα) and its receptor TNFR1, which can activate the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB).
View Article and Find Full Text PDFAlthough an effective treatment for pediatric brain tumors, cranial radiation therapy (CRT) damages surrounding healthy tissue, thereby disrupting brain development. Animal models of pediatric CRT have primarily relied on visual tasks to assess cognitive impairment. Moreover, there has been a lack of sex comparisons as most research on the cognitive effects of pediatric CRT does not include females.
View Article and Find Full Text PDFBackground: While cranial radiation therapy (CRT) is an effective treatment, healthy areas surrounding irradiation sites are negatively affected. Frontal lobe functions involving attention, processing speed, and inhibition control are impaired. These deficits appear months to years after CRT and impair quality of life.
View Article and Find Full Text PDFThe abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery.
View Article and Find Full Text PDFAutoimmune diseases mediated by a type of white blood cell-T lymphocytes-are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants.
View Article and Find Full Text PDFIn many human diseases, the presence of inflammation is associated with an increase in the level of reactive oxygen species (ROS). The resulting state of oxidative stress is highly detrimental and can initiate a cascade of events that ultimately lead to cell death. Thus, many therapeutic attempts have been focused on either modulating the immune system to lower inflammation or reducing the damaging caused by ROS.
View Article and Find Full Text PDFBackground: Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage.
View Article and Find Full Text PDFNeuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimer's disease (AD). Recently, the microtubule-binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-β (Aβ) decreases hyperexcitability and normalizes the excitation/inhibition imbalance.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimer's disease. We and others have shown that over expression of the mitochondrial antioxidant superoxide dismutase 2 (SOD-2) can improve many of the pathologies in the Tg2576 mouse model of Alzheimer's disease that harbors the Swedish mutation in the amyloid precursor protein. However, it is not clear if these improvements are due to functional improvements or structural/anatomical changes.
View Article and Find Full Text PDFManganese ion (Mn(2+)) is a calcium (Ca(2+)) analog that can enter neurons and other excitable cells through voltage gated Ca(2+) channels. Mn(2+) is also a paramagnetic that shortens the spin-lattice relaxation time constant (T(1)) of tissues where it has accumulated, resulting in positive contrast enhancement. Mn(2+) was first investigated as a magnetic resonance imaging (MRI) contrast agent approximately 20 years ago to assess the toxicity of the metal in rats.
View Article and Find Full Text PDFBackground: While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs.
View Article and Find Full Text PDF