Microreactors are emerging as an efficient, sustainable synthetic tool compared to conventional batch reactors. Here, we present a new numbering-up metal microreactor by integrating a flow distributor and a copper catalytic module for high productivity of a commercial synthetic drug. A flow distributor and an embedded baffle disc were manufactured by CNC machining and 3D printing of stainless steel (S/S), respectively, whereas a catalytic reaction module was composed of 25 copper coiled capillaries configured in parallel.
View Article and Find Full Text PDFIn the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer.
View Article and Find Full Text PDF