Publications by authors named "Taejae Jeon"

Most facial analysis methods perform well in standardized testing but not in real-world testing. The main reason is that training models cannot easily learn various human features and background noise, especially for facial landmark detection and head pose estimation tasks with limited and noisy training datasets. To alleviate the gap between standardized and real-world testing, we propose a pseudo-labeling technique using a face recognition dataset consisting of various people and background noise.

View Article and Find Full Text PDF

In recent times, as interest in stress control has increased, many studies on stress recognition have been conducted. Several studies have been based on physiological signals, but the disadvantage of this strategy is that it requires physiological-signal-acquisition devices. Another strategy employs facial-image-based stress-recognition methods, which do not require devices, but predominantly use handcrafted features.

View Article and Find Full Text PDF