Publications by authors named "Taehyun Ryu"

Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear.

View Article and Find Full Text PDF

Pericentromeric heterochromatin mostly comprises repeated DNA sequences prone to ectopic recombination. In cells, 'safe' homologous recombination repair requires relocalization of heterochromatic repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. DSBs are anchored to the nuclear periphery through the Nup107/160 nucleoporin complex.

View Article and Find Full Text PDF

Exploring pore structures that are optically transparent and have high filtration efficiency for ultrafine dust is very important for realizing passive window filters for indoor air purification. Herein, a polyester track-etched (PETE) membrane with vertically perforated micropores is investigated as a cost-effective candidate for transparent window filters. The pore size, which governs transparency and filtration efficiency, can be precisely tuned by conformally depositing an ultrathin oxide layer on the PETE membrane via atomic layer deposition.

View Article and Find Full Text PDF

Heterochromatin mainly comprises repeated DNA sequences that are prone to ectopic recombination. In Drosophila cells, 'safe' repair of heterochromatic double-strand breaks by homologous recombination relies on the relocalization of repair sites to the nuclear periphery before strand invasion. The mechanisms responsible for this movement were unknown.

View Article and Find Full Text PDF

Repairing double-strand breaks (DSBs) is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. Recent studies in Drosophila cells revealed that faithful homologous recombination (HR) repair of heterochromatic DSBs relies on the relocalization of DSBs to the nuclear periphery before Rad51 recruitment. We summarize here the exciting progress in understanding this pathway, including conserved responses in mammalian cells and surprising similarities with mechanisms in yeast that deal with DSBs in distinct sites that are difficult to repair, including other repeated sequences.

View Article and Find Full Text PDF

Repairing double-strand breaks (DSBs) is particularly challenging in heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. In Drosophila cells, faithful homologous recombination (HR) repair of heterochromatic DSBs relies on a specialized pathway that relocalizes repair sites to the nuclear periphery before Rad51 recruitment. Here we show that HR progression is initially blocked inside the heterochromatin domain by SUMOylation and the coordinated activity of two distinct Nse2 SUMO E3 ligases: Quijote (Qjt) and Cervantes (Cerv).

View Article and Find Full Text PDF

We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause.

View Article and Find Full Text PDF

Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, 'safe' homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from the heterochromatin domain before strand invasion. Here we show that heterochromatic DSBs move to the nuclear periphery to continue HR repair.

View Article and Find Full Text PDF

Tuberculosis of the sigmoid colon is a rare disorder. An 80-year-old man visited Bongseng Memorial Hospital for medical examination. A colonoscopy was performed, and a lesion in the sigmoid colon that was suspected to be colon cancer was found.

View Article and Find Full Text PDF

One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML.

View Article and Find Full Text PDF