Flexible and wearable physical sensors have gained significant interest owing to their potential in attachable devices, electronic skin, and multipurpose sensors. The physical stimuli of these sensors typically consist of vertically and horizontally applied pressures and strains, respectively. However, owing to their similar response characteristics, interference occurs between the two types of signals detected, complicating the distinction between pressure and strain stimuli, leading to inaccurate data interpretation and reduced sensor specificity.
View Article and Find Full Text PDFA physical sensor with a sensing medium comprising multiparallel-connected (MPC) piezoresistive pathways in both the vertical and horizontal directions was developed to achieve improved sensing performance. The MPC sensing medium reduces the total resistance and offsets noise, offering enhanced signal stability and device reliability and providing a high-performance sensing platform. The signal change and gauge factor (GF) of the 3PW-5L strain sensor (comprising three lines and five layers of piezoresistive pathways horizontally and vertically, respectively) were, respectively, 5.
View Article and Find Full Text PDFOrganic charge-modulated field-effect transistors (OCMFETs) have garnered significant interest as sensing platforms for diverse applications that include biomaterials and chemical sensors owing to their distinct operational principles. This study aims to improve the understanding of driving mechanisms in OCMFETs and optimize their device performance by investigating the correlation between organic field-effect transistors (OFETs) and OCMFETs. By introducing self-assembled monolayers (SAMs) with different functional groups on the AlO gate dielectric surface, we explored the impact of the surface characteristics on the electrical behavior of both devices.
View Article and Find Full Text PDF