Publications by authors named "Taehee Han"

Although the use of ultraviolet (UV) light-emitting diode backlight with red, green, and blue color-conversion layers (CCLs) in displays simplifies the manufacturing process and improves display uniformity, research on blue CCLs remains limited and has been mostly reported in the sky-blue region (> 470 nm), which is insufficient to satisfy the Rec. 2020 color standard. As halide perovskites offer a high extinction coefficient, color purity, and photoluminescence quantum yield (PLQY), they become highly competitive color-converting materials for CCLs.

View Article and Find Full Text PDF

Polycrystalline perovskite light-emitting diodes (PeLEDs) have shown great promise with high efficiency and easy processability. However, PeLEDs using single-cation polycrystalline perovskite emitters have demonstrated low efficiency due to defects within the grains and at the interfaces between the perovskite layer and the charge injection contact. Thus, simultaneous defect engineering of perovskites to suppress exciton loss within the grains and at the interfaces is crucial for achieving high efficiency in PeLEDs.

View Article and Find Full Text PDF

In contrast to normal cells, cancer cells predominantly utilise glycolysis for ATP generation under aerobic conditions, facilitating proliferation and metastasis. Targeting glycolysis is effective for cancer treatment. Prodigiosin (PDG) is a natural compound with various bioactivities, including anticancer effects.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor associated with cancer metabolism and is regarded as a potent anticancer therapeutic strategy within the hypoxic microenvironment of cancer. In this study, stilbenoid derivatives were designed, synthesized, and assessed for their capacity to inhibit HIF-1α-associated cancer metabolism and evaluated for inhibition of cancer cell viability and HIF activation. Through the structure-activity relationship studies, compound 28e was identified as the most potent derivative.

View Article and Find Full Text PDF
Article Synopsis
  • CYB5R3 is a protein that helps with important processes in cells, but its role in cancer is not fully known.
  • In lung cancer, levels of CYB5R3 are lower, but increasing it can stop lung cancer cells from growing and help kill them.
  • This study shows that CYB5R3 helps create certain chemicals that trigger stress in cancer cells, leading to their death, making it a potential target for new lung cancer treatments.
View Article and Find Full Text PDF

Systems metabolic engineering, which integrates metabolic engineering with systems biology, synthetic biology, and evolutionary engineering, has revolutionized the sustainable production of fuels and materials through the creation of efficient microbial cell factories. Recent advancements in systems metabolic engineering targeting different biological components of the host cell have enabled the creation of highly productive microbial cell factories. This article provides a review of the recent tools and strategies used for enzyme-, genetic module-, pathway-, flux-, genome-, and cell-level engineering, supported by illustrative examples.

View Article and Find Full Text PDF

Ferroptosis, a type of cell death induced by lipid peroxidation, has emerged as a novel anti-cancer strategy. Cancer cells frequently acquire resistance to ferroptosis. However, the underlying mechanisms are poorly understood.

View Article and Find Full Text PDF

Valerolactam (VL) is an important precursor chemical for nylon-5 and nylon 6,5. It has been produced by petroleum-based route involving harsh reaction conditions and generating toxic wastes. Here, we report the complete biosynthesis of VL by metabolically engineered Corynebacterium glutamicum overproducing L-lysine.

View Article and Find Full Text PDF

Synthetic sRNAs allow knockdown of target genes at translational level, but have been restricted to a limited number of bacteria. Here, we report the development of a broad-host-range synthetic sRNA (BHR-sRNA) platform employing the RoxS scaffold and the Hfq chaperone from Bacillus subtilis. BHR-sRNA is tested in 16 bacterial species including commensal, probiotic, pathogenic, and industrial bacteria, with >50% of target gene knockdown achieved in 12 bacterial species.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a way to use metal halide perovskites and TiO to make materials that can help break down carbon dioxide (CO) and pollutants in sunlight.
  • They created a special mixture without using any harmful chemicals, which is a new and better method.
  • Their experiments showed that this new mixture can produce CO quickly and also clean up organic pollutants when exposed to natural sunlight.
View Article and Find Full Text PDF

Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are lacking. Thus, in this study, we synthesized novel NIR probes () by introducing a nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity.

View Article and Find Full Text PDF
Article Synopsis
  • Ionic liquids (ILs) show potential in pharmaceuticals, particularly regarding their effect on the hypoxia-inducible factor (HIF)-1α, a target in cancer treatment.
  • The study reveals that dimethylaminopyridinium inhibits HIF-1α activation and reduces viability in colon cancer cells (HCT116) more than in normal cells (WI-38), especially when the alkyl chain length is increased.
  • It suggests that this compound works by diminishing HIF-1α levels under low oxygen conditions and interfering with mitochondrial function, thus regulating cancer cell metabolism and offering a promising avenue for cancer therapy.
View Article and Find Full Text PDF

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration.

View Article and Find Full Text PDF

This review outlines problems and progress in development of solution-processed organic light-emitting diodes (SOLEDs) in industry and academia. Solution processing has several advantages such as low consumption of materials, low-cost processing, and large-area manufacturing. However, use of a solution process entails complications, such as the need for solvent resistivity and solution-processable materials, and yields SOLEDs that have limited luminous efficiency, severe roll-off characteristics, and short lifetime compared to OLEDs fabricated using thermal evaporation.

View Article and Find Full Text PDF

Hypoxia inducible factor (HIF)-1α is an important transcription factor regulating cancer metabolism in hypoxic environment. Capsaicin is known to inhibit hypoxia-induced HIF activity in lung cancer. Hence, in this study we tried to elucidate its inhibitory mechanism of action.

View Article and Find Full Text PDF

A number of management issues can be used as drivers for change in order to improve animal welfare and nursing capacity of the hyperprolific sow. Group housing of sows during gestation is a recommended practice from the perspective of animal welfare. Related health issues include reproductive health and the locomotor system.

View Article and Find Full Text PDF

As a result of intensive breeding, litter size has considerably increased in pig production over the last three decades. This has resulted in an increase in farrowing complications. Prolonged farrowing will shorten the window for suckling colostrum and reduce the chances for high-quality colostrum intake.

View Article and Find Full Text PDF

This paper introduces a method for improving the sensitivity to NO gas of a p-type metal oxide semiconductor gas sensor. The gas sensor was fabricated using CuO nanowires (NWs) grown through thermal oxidation and decorated with ZnO nanoparticles (NPs) using a sol-gel method. The CuO gas sensor with a ZnO heterojunction exhibited better sensitivity to NO gas than the pristine CuO gas sensor.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF)-1 is an important regulator of the cellular response in the hypoxic tumor environment. While searching for HIF inhibitors derived from natural products that act as anticancer agents, we found that Glycyrrhiza uralensis exerts HIF-1 inhibitory activity in hypoxic cancer cells. Among the five components of G.

View Article and Find Full Text PDF

There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an l-lysine-overproducing BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising l-lysine monooxygenase () and 5-aminovaleramide amidohydrolase () genes and 4-aminobutyrate aminotransferase () and succinate-semialdehyde dehydrogenase () genes, was introduced into the BE strain.

View Article and Find Full Text PDF

Defect passivation constitutes one of the most commonly used strategies to fabricate highly efficient perovskite solar cells (PSCs). However, the durability of the passivation effects under harsh operational conditions has not been extensively studied regardless of the weak and vulnerable secondary bonding between the molecular passivation agents and perovskite crystals. Here, we incorporated strategically designed passivating agents to investigate the effect of their interaction energies on the perovskite crystals and correlated these with the performance and longevity of the passivation effects.

View Article and Find Full Text PDF

Edible insects have been used as an alternative protein source for food and animal feed, and the market size for edible insects has increased. larvae, also known as mealworm and yellow mealworm, are considered a good protein source with nutritional value, digestibility, flavor, and a functional ability. Additionally, they are easy to breed and feed for having a stable protein content, regardless of their diets.

View Article and Find Full Text PDF

Conventional epitaxy of semiconductor films requires a compatible single crystalline substrate and precisely controlled growth conditions, which limit the price competitiveness and versatility of the process. We demonstrate substrate-tolerant nano-heteroepitaxy (NHE) of high-quality formamidinium-lead-tri-iodide (FAPbI) perovskite films. The layered perovskite templates the solid-state phase conversion of FAPbI from its hexagonal non-perovskite phase to the cubic perovskite polymorph, where the growth kinetics are controlled by a synergistic effect between strain and entropy.

View Article and Find Full Text PDF

Sustainable production of chemicals from renewable non-food biomass has become a promising alternative to overcome environmental issues caused by our heavy dependence on fossil resources. Systems metabolic engineering, which integrates traditional metabolic engineering with systems biology, synthetic biology, and evolutionary engineering, is enabling the development of microbial cell factories capable of efficiently producing a myriad of chemicals and materials including biofuels, bulk and fine chemicals, polymers, amino acids, natural products and drugs. In this paper, many tools and strategies of systems metabolic engineering, including in silico genome-scale metabolic simulation, sophisticated enzyme engineering, optimal gene expression modulation, in vivo biosensors, de novo pathway design, and genomic engineering, employed for developing microbial cell factories are reviewed.

View Article and Find Full Text PDF