Publications by authors named "Taegeun Noh"

To realize economically feasible electrochemical CO conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO electroreduction.

View Article and Find Full Text PDF

In the operation of a direct methanol fuel cell, the modification by chloride ions on the surface of a Pt cathode can facilitate the extraordinary increase of power performance and long-term stability. Analyzing the results of cyclic voltammograms and electrochemical impedance spectroscopy, the positive shift of Pt oxidation onset potential and the depression of oxidation current are observed, which results from the role of chloride as surface inhibitor. In addition, O(2) temperature-programmed desorption and X-ray photoelectron spectroscopy also reveal that the suppression of Pt surface oxide can be best understood in terms of lower binding of oxygen species by the alteration of electronic state of Pt atoms.

View Article and Find Full Text PDF

The use of a ribbon-shaped Pt electrode gives rise to edge effects of the interfacial potential, as is predicted from the potential theory in the form of the corresponding reaction-migration equation. They are studied in the bistable region of formic acid oxidation. Essentially, the edges tend to be more passive than the bulk of the electrode, which also causes a passivation (activation) transition to originate from the edges (center) of the ribbon.

View Article and Find Full Text PDF