Publications by authors named "Taeeun Yim"

Nanosize-controlled antimony oxides (SbO) that can effectively scavenge fluoride species in a cell are incorporated into a PI separator to regulate its porous structure. The incorporation of the SbO layer onto the PI separator surface prevents the internal short circuit and efficiently removes fluoride species chemical scavenging reactions, thereby resulting in stable cycling behaviors upon cycling.

View Article and Find Full Text PDF

Ni-rich NCM and SiO electrode materials have garnered the most attention for advanced lithium-ion batteries (LIBs); however, severe parasitic reactions occurring at their interfaces are critical bottlenecks in their widespread application. In this study, an effective additive combination (VL) composed of vinylene carbonate (VC) and lithium difluoro(oxalato)borate (LiDFOB) is proposed for both Ni-rich NCM and SiO electrode materials. The LiDFOB additive individually delivers inorganic-rich cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers in anodic and cathodic polarizations before the VC additive.

View Article and Find Full Text PDF

Despite the enormous interest in high-areal-capacity Li battery electrodes, their structural instability and nonuniform charge transfer have plagued practical application. Herein, we present a cationic semi-interpenetrating polymer network (c-IPN) binder strategy, with a focus on the regulation of electrostatic phenomena in electrodes. Compared to conventional neutral linear binders, the c-IPN suppresses solvent-drying-induced crack evolution of electrodes and improves the dispersion state of electrode components owing to its surface charge-driven electrostatic repulsion and mechanical toughness.

View Article and Find Full Text PDF

A theoretical protocol based on long-range corrected density functional theory is suggested for a highly accurate estimation of the two-electron two-proton (2e2p) reduction potential of ethyl 2-phenylazocarboxylate derivatives. Geometry optimization and single-point energy refinement with ωB97X-D are recommended. The impact of polarization and diffusion functions in the basis sets on the 2e2p reduction potential is discussed.

View Article and Find Full Text PDF

Nickel-rich lithium metal oxide cathode materials have recently be en highlighted as next-generation cathodes for lithium-ion batteries. Nevertheless, their relatively high surface reactivity must be controlled, as fading of the cycling retention occurs rapidly in the cells. This paper proposes functionalized nickel-rich lithium metal oxide cathode materials by a multipurpose nanosized inorganic material-titanium silicon oxide-via a simple thermal treatment process.

View Article and Find Full Text PDF

Galvanic couple-assisted dissolution of Mg metal in an ethereal solution containing tris(2H-hexafluoroisopropyl)borate was utilized to prepare an efficient Al-compatible electrolyte for rechargeable Mg batteries. The electrolyte exhibited conditioning-free Mg deposition, high oxidative stability (3.5 V vs.

View Article and Find Full Text PDF

A dataset in this report is regarding a research article "Crucial Role of Thioacetamide for ZrO Coating on the Fragile Surface of Ni-rich Layered Cathode in Lithium Ion Batteries" [1]. Thioacetamide (TA) is introduced to form a homogeneous ZrO-coating in a facile method through washing with Zr(SO) aqueous solution. The presence of the data in this paper indicated the role of TA for surface modification of LiNiCoMnO (NCM82) materials by ZrO, leading to improve the electrochemical performance of NCM82 Ni-rich cathode materials.

View Article and Find Full Text PDF

Porous carbonaceous anode materials have received considerable attention as an alternative anode material, however, there is a critical bottleneck as it suffers from a large irreversible specific capacity loss over several initial cycles owing to undesired surface reactions. In order to suppress undesired surface reactions of porous carbonaceous anode material, here, we suggest a simple and convenient two-step surface modification approach that allows the embedding of an amide functional group on the surface of a porous carbonaceous anode, which effectively improves the surface stability. In this approach, the porous carbonaceous anode material is firstly activated by means of strong acid treatment comprising a combination of H SO and HNO , and it is subjected to further modification by means of an amide coupling reaction.

View Article and Find Full Text PDF

In this work, oxidation potential tunable organic molecules, alkyl 2-phenyl hydrazocarboxylates, were disclosed. The exquisite tuning of their oxidation potentials facilitated a catalytic dehydrogenation of 1,2,3,4-tetrahydroquinolines in the presence of Mn(Pc) and O.

View Article and Find Full Text PDF

Lithium-oxygen (Li-O) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth.

View Article and Find Full Text PDF

Dimethoxydimethylsilane (DODSi) is used as an interface stabilizing additive through a selective HF scavenging reaction for layered Ni-rich oxide cathodes. Ex situ NMR analyses demonstrated that DODSi effectively removes HF from the electrolyte based on the matched chemical reactivity of Si with F and O with H . The cells employing DODSi exhibit higher specific capacity with retention than those cycled with a DODSi-free electrolyte even under in situ HF generating conditions.

View Article and Find Full Text PDF

Tris(trimethylsilyl) phosphite (TMSP) has received considerable attention as a functional additive for various cathode materials in lithium-ion batteries, but the effect of TMSP on the surface stability of a graphite anode has not been studied. Herein, we demonstrate that TMSP serves as an effective solid electrolyte interphase (SEI)-forming additive for graphite anodes in lithium-ion batteries (LIBs). TMSP forms SEI layers by chemical reactions between TMSP and a reductively decomposed ethylene carbonate (EC) anion, which is strikingly different from the widely known mechanism of the SEI-forming additives.

View Article and Find Full Text PDF

Na-SO batteries are promising power sources for energy storage systems. However, it is unclear what happens on the cathode surface at the molecular level during the discharge process. Here, we provide the working mechanism of Na-SO batteries through a combination of nuclear magnetic resonance (NMR) spectroscopy and first-principles NMR calculations.

View Article and Find Full Text PDF

Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode.

View Article and Find Full Text PDF

Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g(-1) based on the mass of catholyte and carbon electrode with an operating voltage of 3 V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability.

View Article and Find Full Text PDF

User safety is one of the most critical issues for the successful implementation of lithium ion batteries (LIBs) in electric vehicles and their further expansion in large-scale energy storage systems. Herein, we propose a novel approach to realize self-extinguishing capability of LIBs for effective safety improvement by integrating temperature-responsive microcapsules containing a fire-extinguishing agent. The microcapsules are designed to release an extinguisher agent upon increased internal temperature of an LIB, resulting in rapid heat absorption through an in situ endothermic reaction and suppression of further temperature rise and undesirable thermal runaway.

View Article and Find Full Text PDF

Lithium-sulfur batteries suffer from severe self-discharge due to polysulfide dissolution into electrolytes. In this work, a chemically anchored polymer-coated (CAPC) sulfur electrode was prepared, through chemical bonding by coordinated Cu ions and cross-linking, to improve cyclability for Li/S batteries. This electrode retained specific capacities greater than 665 mAh g(-1) at high current density of 3.

View Article and Find Full Text PDF

As a means of enhancing the electrochemical performance of silicon-graphite composites, we propose a novel binder candidate that is modified by a combination of rigid and elastic functional groups on its binder framework. To provide an efficient binder that is also capable of rapid volume changes, a co-polymer binder (PAA-PAA/PMA) is synthesized by employing poly(acrylic acid) (PAA) as the main binder framework and poly(acrylic acid)-co-poly(maleic acid) (PAA/PMA) as an additional elastic polymer auxiliary. This co-polymer binder (PAA-PAA/PMA) affords a good balance of adhesive and mechanical (rigidity and elasticity) properties, which creates an excellent cycle performance with a high specific capacity (751.

View Article and Find Full Text PDF

The effects of surface treatment combining corona discharge and hydrogen peroxide (H2O2) on the electrochemical performance of carbon felt electrodes for vanadium redox flow batteries (VRFBs) have been thoroughly investigated. A high concentration of oxygen functional groups has been successfully introduced onto the surface of the carbon felt electrodes by a specially designed surface treatment, which is mainly responsible for improving the energy efficiency of VRFBs. In addition, the wettability of the carbon felt electrodes also can be significantly improved.

View Article and Find Full Text PDF

Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions.

View Article and Find Full Text PDF

We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture.

View Article and Find Full Text PDF

Unraveling the fundamentals of Li-O(2) battery chemistry is crucial to develop practical cells with energy densities that could approach their high theoretical values. We report here a straightforward chemical approach that probes the outcome of the superoxide O(2)(-), thought to initiate the electrochemical processes in the cell. We show that this serves as a good measure of electrolyte and binder stability.

View Article and Find Full Text PDF

Several new acyclic ammonium-TFSI ionic liquids with an allyl substituent(s) were synthesized and their physicochemical and electrochemical properties were characterized. [AAMM]Am-TFSI (3) with two allyl groups showed the widest electrochemical stability window (5.9 V) among the ammonium-based ILs reported to date because of the increment of both the anodic and cathodic limits.

View Article and Find Full Text PDF