Ras small GTPases act as molecular switches in various cellular signaling pathways, including cell migration, proliferation, and differentiation. Three Rap proteins are present in Dictyostelium; RapA, RapB, and RapC. RapA and RapC have been reported to have opposing functions in the control of cell adhesion and migration.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2023
DydA plays an important role in chemotaxis, development, and cell growth as an adaptor protein that connects Ras signaling and cytoskeletal rearrangement. DydA is a downstream effector of RasG and is involved in controlling cell polarity and pseudopodia formation during chemoattractant-directed cell migration. To understand the mechanism by which DydA functions on the cell migration, we investigated the dynamic subcellular localization of DydA in response to chemoattractant stimulation and found that DydA rapidly and transiently translocated to the cell cortex through the RA domain and the PRM region in DydA in response to chemoattractant stimulation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2022
Phosphatidylinositol 3-Kinase (PI3K) is a key regulator of cell motility during chemotaxis and plays an important role in relaying and amplifying the shallow gradient of chemoattractant signals to ultimately mediate rearrangements of the actin cytoskeleton. To determine whether PI3K plays a similar role in electrotaxis as in chemotaxis, we examined directional cell migration in response to an electric field (EF) and unexpectedly found that the role of PI3K in regulating cell motility differs depending on the state of Dictyostelium cells. Contrary to chemotaxis experiments using aggregation-competent cells, in the cell migration assay, we used a recently developed method for electrotaxis using 3-h starved cells.
View Article and Find Full Text PDFJ Microbiol
September 2021
Rap small GTPases are involved in diverse signaling pathways associated with cell growth, proliferation, and cell migration. There are three Rap proteins in Dictyostelium, RapA, RapB, and RapC. RapA is a key regulator in the control of cell adhesion and migration.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
July 2021
There are three Rap proteins in . RapA is a key regulator of cell adhesion and cytoskeletal rearrangement. Recently, RapC has been reported to be involved in cytokinesis, cell migration, and multicellular development.
View Article and Find Full Text PDFChemotaxis, which is G protein-coupled receptor (GPCR)-mediated directional cell migration, plays pivotal roles in diverse human diseases, including recruitment of leukocytes to inflammation sites and metastasis of cancer. It is still not fully understood how eukaryotes sense and chemotax in response to chemoattractants with an enormous concentration range. A genetically traceable model organism, , is the best-studied organism for GPCR-mediated chemotaxis.
View Article and Find Full Text PDFThe actin cytoskeleton is involved in the regulation of cell morphology and migration. Wiskott-Aldrich Syndrome proteins (WASPs) play an important role in controlling actin polymerization by activating the Arp2/3 complex. The present study investigated the roles of WasC, one of the 3 WASPs in Dictyostelium, in cellular processes.
View Article and Find Full Text PDFMotile cells manifest increased migration speed and directionality in gradients of stimuli, including chemoattractants, electrical potential and substratum stiffness. Here, we demonstrate that cells move directionally in response to an electric field (EF) with specific acceleration/deceleration kinetics of directionality and migration speed. Detailed analyses of the migration kinetics suggest that migration speed and directionality are separately regulated by Gβ and RasG, respectively, in EF-directed cell migration.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2018
The small GTPase Ras proteins are involved in diverse cellular processes. We investigated the functions of RapC, one of 15 Ras subfamily GTPases in Dictyostelium. Loss of RapC resulted in a spread shape of cells; severe defects in cytokinesis leading to multinucleation; decrease of migration speed in chemoattractant-mediated cell migration, likely through increased cell adhesion; and aberrations in multicellular development producing abnormal multiple tips from one mound and multi-branched developmental structures.
View Article and Find Full Text PDFCalcium ions are involved in the regulation of diverse cellular processes. Fourteen genes encoding calcium binding proteins have been identified in . CBP7, one of the 14 CBPs, is composed of 169 amino acids and contains four EF-hand motifs.
View Article and Find Full Text PDFFERM domain-containing proteins are involved in diverse biological and pathological processes, including cell-substrate adhesion, cell-cell adhesion, multicellular development, and cancer metastasis. In this study, we determined the functions of FrmB, a FERM domain-containing protein, in the cell morphology, cell adhesion, and multicellular development of Dictyostelium cells. Our results show that FrmB appears to play an important role in regulating the size of developmental structures.
View Article and Find Full Text PDFEstablishment of cell polarity is mediated by a series of signaling molecules that are asymmetrically activated or localized in the cell upon extracellular stimulation. To understand the mechanism that mediates anterior/posterior asymmetric localization of RapGAP3 during migration, we determined the minimally required amino acids in the I/LWEQ domain that cause posterior localization and found that the minimal region of the F-actin binding domain for posterior localization could, with some additional deletion at the C-terminal, localize to the anterior. Analysis of the localization and translocation kinetics to the cell cortex of the truncated proteins suggests that the required regions for anterior/posterior localization might have a preferential binding affinity to preexisting F-actins at the rear and lateral sides of the cell or newly formed F-actins at the front of the cell, leading to distinct differential sites of the cell.
View Article and Find Full Text PDFCell migration requires a defined cell polarity which is formed by diverse cytoskeletal components differentially localized to the poles of cells to extracellular signals. Rap- GAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation and localizes to the leading edge of migrating cells. Here, we examined localization of truncated RapGAP3 proteins and found that the I/LWEQ domain in the central region of RapGAP3 was sufficient for posterior localization in migrating cells, as opposed to leading-edge localization of full-length Rap- GAP3.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2014
Recent reports have demonstrated that the importance of Rap1-specific GTPase-activating proteins (GAPs) in the spatial and temporal regulation of Rap1 activity during cell migration and development in Dictyostelium. Here, we identified another putative Rap1 GAP-domain containing protein, showing high sequence homologies with those of human Rap1GAP and Dictyotelium RapGAP3, by bioinformatic search. Loss of RapGAP9 resulted in some defects in morphogenesis and development in Dicytostelium.
View Article and Find Full Text PDFHow independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis.
View Article and Find Full Text PDFCell movement involves a coordinated regulation of the cytoskeleton, F-actin-mediated protrusions at the front and myosin-mediated contraction of the posterior of a cell. The small GTPase Rap1 functions as a key regulator in the spatial and temporal control of cytoskeleton reorganization for cell migration. This review outlines the establishment of cell polarity by differential localizations of the cytoskeleton and discusses the spatial and temporal regulation of cytoskeleton reorganization via the Rap1 signaling pathway during chemotaxis with a focus on recent advances in the study of chemotaxis using a simple eukaryotic model organism, Dictyostelium discoideum.
View Article and Find Full Text PDFRap1 is rapidly and transiently activated in response to chemoattractant stimulation and helps establish cell polarity by locally modulating cytoskeletons. Here, we investigated the mechanisms by which Rap1 controls actin cytoskeletal reorganization in Dictyostelium and found that Rap1 interacts with RacGEF1 in vitro and stimulates F-actin polymerization at the sites where Rap1 is activated upon chemoattractant stimulation. Live cell imaging using GFP-coronin, a reporter for F-actin, demonstrates that cells expressing constitutively active Rap1 (Rap1CA) exhibit a high level of F-actin uniformly distributed at the cortex including the posterior and lateral sides of the chemotaxing cell.
View Article and Find Full Text PDFCortexillins are actin-bundling proteins that play a critical role in regulating cell morphology and actin cytoskeleton reorganization in Dictyostelium. Here, we investigated dynamic subcellular localization of cortexillin I in chemotaxing Dictyostelium cells. Most of the cortexillin I was enriched on the lateral sides of moving cells.
View Article and Find Full Text PDFRap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2.
View Article and Find Full Text PDFRap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration.
View Article and Find Full Text PDFThe expression of amoeba sams genes is switched from sams1 to sams2 when amoebae are infected with Legionella jeonii. To elucidate the mechanism for the inactivation of host sams1 gene by endosymbiotic bacteria, methylation states of the sams1 gene of D and xD amoebae was compared in this study. The sams1 gene of amoebae was methylated at an internal adenine residue of GATC site in symbiont-bearing xD amoebae but not in symbiont-free D amoebae, suggesting that the modification might have caused the inactivation of sams1 in xD amoebae.
View Article and Find Full Text PDFSpatial and temporal regulation of Rap1 is required for proper myosin assembly and cell adhesion during cell migration in Dictyostelium discoideum. Here, we identify a Rap1 guanosine triphosphatase-activating protein (GAP; RapGAP1) that helps mediate cell adhesion by negatively regulating Rap1 at the leading edge. Defects in spatial regulation of the cell attachment at the leading edge in rapGAP1- (null) cells or cells overexpressing RapGAP1 (RapGAP1(OE)) lead to defective chemotaxis.
View Article and Find Full Text PDFWe have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly.
View Article and Find Full Text PDFThe expression of genes for S-adenosylmethionine synthetase (SAMS), which catalyzes the synthesis of S-adenosylmethionine (AdoMet), a major methyl donor in cells, was studied in symbiont-free (D) and symbiont-bearing (xD) amoeba strains to determine the effect of bacterial endosymbionts. The symbionts suppressed the expression of the gene in host xD amoebae, but amoebae still exhibited about half the enzyme activity found in symbiont-free D amoebae. The study was aimed at elucidating mechanisms of the suppression of the amoeba's gene and determining the alternative source for the gene product.
View Article and Find Full Text PDFJ Eukaryot Microbiol
June 2003
As a result of harboring obligatory bacterial endosymbionts, the xD strain of Amoeba proteus no longer produces its own S-adenosylmethionine synthetase (SAMS). When symbiont-free D amoebae are infected with symbionts (X-bacteria), the amount of amoeba SAMS decreases to a negligible level within four weeks, but about 47% of the SAMS activity, which apparently comes from another source, is still detected. Complete nucleotide sequences of sams genes of D and xD amoebae are presented and show that there are no differences between the two.
View Article and Find Full Text PDF