We present a data-driven approach to compensate for optical aberrations in calibration-free quantitative phase imaging (QPI). Unlike existing methods that require additional measurements or a background region to correct aberrations, we exploit deep learning techniques to model the physics of aberration in an imaging system. We demonstrate the generation of a single-shot aberration-corrected field image by using a U-net-based deep neural network that learns a translation between an optical field with aberrations and an aberration-corrected field.
View Article and Find Full Text PDFIn tomographic reconstruction, the image quality of the reconstructed images can be significantly degraded by defects in the measured two-dimensional (2D) raw image data. Despite the importance of screening defective 2D images for robust tomographic reconstruction, manual inspection and rule-based automation suffer from low-throughput and insufficient accuracy, respectively. Here, we present deep learning-enabled quality control for holographic data to produce robust and high-throughput optical diffraction tomography (ODT).
View Article and Find Full Text PDF