The determinant factors of an organism's size during animal development have been explored from various angles but remain partially understood. In , many genes affecting cuticle structure, cell growth, and proliferation have been identified to regulate the worm's overall morphology, including body size. While various mutations in those genes directly result in changes in the morphological phenotypes, there is still a need for established, clear, and distinct standards to determine the apparent abnormality in a worm's size and shape.
View Article and Find Full Text PDFLymphatic filariasis and onchocerciasis caused by filarial nematodes are important diseases leading to considerable morbidity throughout tropical countries. Diethylcarbamazine (DEC), albendazole (ALB), and ivermectin (IVM) used in massive drug administration are not highly effective in killing the long-lived adult worms, and there is demand for the development of novel macrofilaricidal drugs affecting new molecular targets. A Ca binding protein, calumenin, was identified as a novel and nematode-specific drug target for filariasis, due to its involvement in fertility and cuticle development in nematodes.
View Article and Find Full Text PDFRegulator of calcineurin 1 (RCAN1) binds to calcineurin through the PxIxIT motif, which is evolutionarily conserved. SP repeat phosphorylation in RCAN1 is required for its complete function. The specific interaction between RCAN1 and calcineurin is critical for calcium/calmodulin-dependent regulation of calcineurin serine/threonine phosphatase activity.
View Article and Find Full Text PDFIn many Gram-positive bacteria PerR is a major peroxide sensor whose repressor activity is dependent on a bound metal cofactor. The prototype for PerR sensors, the Bacillus subtilis PerRBS protein, represses target genes when bound to either Mn(2+) or Fe(2+) as corepressor, but only the Fe(2+)-bound form responds to H2O2. The orthologous protein in the human pathogen Staphylococcus aureus, PerRSA, plays important roles in H2O2 resistance and virulence.
View Article and Find Full Text PDFCalcineurin is a Ca(2+)/calmodulin-dependent protein phosphatase involved in calcium signaling pathways. In Caenorhabditis elegans, the loss of calcineurin activity causes pleiotropic defects including hyperadaptation of sensory neurons, hypersensation to thermal difference and hyper-egg-laying when worms are refed after starvation. In this study, we report on arrd-17 as calcineurin-interacting protein-1 (cnp-1), which is a novel molecular target of calcineurin.
View Article and Find Full Text PDFDicarbonyl/L-xylulose reductase (DCXR) converts l-xylulose into xylitol, and reduces various α-dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. In this study, we identified DHS-21 as the only DCXR ortholog in Caenorhabditis elegans. The dhs-21 gene is expressed in various tissues including the intestine, gonadal sheath cells, uterine seam (utse) cells, the spermathecal-uterus (sp-ut) valve and on the plasma membrane of spermatids.
View Article and Find Full Text PDF