Effective photoinduced charge transfer makes molecular bimetallic assemblies attractive for applications as active light-induced proton reduction systems. Developing competitive base metal dyads is mandatory for a more sustainable future. However, the electron transfer mechanisms from the photosensitizer to the proton reduction catalyst in base metal dyads remain so far unexplored.
View Article and Find Full Text PDFThis paper presents the implementation of high-energy-resolution off-resonant spectroscopy (HEROS) measurements using self-seeded x-ray free-electron laser (XFEL) pulses. This study systematically investigated XFEL conditions, including photon energy and accumulated shot numbers, to optimize the measurement efficiency for copper foil samples near the -edge. The x-ray absorption spectra reconstructed using HEROS were compared with those derived from fluorescence-yield measurements.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2023
Self-seeded hard X-ray pulses at PAL-XFEL were used to commission a resonant X-ray emission spectroscopy experiment with a von Hamos spectrometer. The self-seeded beam, generated through forward Bragg diffraction of the [202] peak in a 100 µm-thick diamond crystal, exhibited an average bandwidth of 0.54 eV at 11.
View Article and Find Full Text PDFSingle-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy) ] (terpy = 2,2':6',2″-terpyridine) in solution phase.
View Article and Find Full Text PDFX-ray free-electron laser sources enable time-resolved X-ray studies with unmatched temporal resolution. To fully exploit ultrashort X-ray pulses, timing tools are essential. However, new high repetition rate X-ray facilities present challenges for currently used timing tool schemes.
View Article and Find Full Text PDFPhotochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging.
View Article and Find Full Text PDFPhoto-induced oxidation-enhancement in biomimetic bridged Ru(ii)-Mo(vi) photo-catalyst is unexpectedly photo-activated in ps timescales. One-photon absorption generates an excited state where both photo-oxidized and photo-reduced catalytic centres are activated simultaneously and independently.
View Article and Find Full Text PDFA new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability.
View Article and Find Full Text PDFThe European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>10 photons pulse and up to 27000 pulses s), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument.
View Article and Find Full Text PDFOwing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy.
View Article and Find Full Text PDFThe gastrointestinal tract is a challenging anatomical target for diagnostic and therapeutic procedures for bleeding, polyps and cancerous growths. Advanced endoscopes that combine imaging and therapies within the gastrointestinal tract provide an advantage over stand-alone diagnostic or therapeutic devices. However, current multimodal endoscopes lack the spatial resolution necessary to detect and treat small cancers and other abnormalities.
View Article and Find Full Text PDFPurpose: To reduce beam hardening artifacts caused by the shoulder joint, we explored new and unique methods to improve the quality of images, such as varying the injection site and changing the position of patients (swimmers position).
Materials And Methods: Fifth-four patients underwent neck CT examinations performed in routine and swimmers position and with a 64-slice MDCT scanner in spiral scanning. To examine the difference due to the injection sites of contrast material, subjects were divided into right- and left-side groups.
The purpose of this research is to develop a diagnostic reference level for computed tomography (CT) suitable for Korean medical purposes. The direction of CT application and details on patient dose were investigated by survey, and the dose measurement is targeted in general hospitals registered with the Korean Hospital Association. The dose measurement was done with head and body phantom, and an accurate dosimeter was utilised in medical institutions that participated in the survey.
View Article and Find Full Text PDFObjective: The objective of this study was to examine the effectiveness of a meditation-based stress management program in patients with anxiety disorder.
Methods: Patients with anxiety disorder were randomly assigned to an 8-week clinical trial of either a meditation-based stress management program or an anxiety disorder education program. The Hamilton Anxiety Rating Scale (HAM-A), the Hamilton Depression Rating Scale (HAM-D), the State-Trait Anxiety Inventory (STAI), the Beck Depression Inventory, and the Symptom Checklist--90-Revised (SCL-90-R) were used to measure outcome at 0, 2, 4, and 8 weeks of the program.