Publications by authors named "Tae-Keun Kim"

Protein PEGylation, i.e. functionalization with poly(ethylene glycol) chains, has been demonstrated an efficient way to improve the therapeutic index of these biopharmaceuticals.

View Article and Find Full Text PDF

We aimed to discover and validate urinary exosomal proteins as biomarkers for antibody-mediated rejection (ABMR) after kidney transplantation. Urine and for-cause biopsy samples from kidney transplant recipients were collected and categorized into the discovery cohort ( = 36) and a validation cohort ( = 65). Exosomes were isolated by stepwise ultra-centrifugation for proteomic analysis to discover biomarker candidates for ABMR ( = 12).

View Article and Find Full Text PDF

Conjugation of biopharmaceuticals to polyethylene glycol chains, known as PEGylation, is nowadays an efficient and widely exploited strategy to improve critical properties of the active molecule, including stability, biodistribution profile, and reduced clearance. A crucial step in the manufacturing of PEGylated drugs is the purification. The reference process in industrial settings is single-column chromatography, which can meet the stringent purity requisites only at the expenses of poor product recoveries.

View Article and Find Full Text PDF

Optical diffraction tomography (ODT), an emerging imaging technique that does not require fluorescent staining, can measure the three-dimensional distribution of the refractive index (RI) of organelles. In this study, we used ODT to characterize the pathological characteristics of human eosinophils derived from asthma patients presenting with eosinophilia. In addition to morphological information about organelles appearing in eosinophils, including the cytoplasm, nucleus, and vacuole, we succeeded in imaging specific granules and quantifying the RI values of the granules.

View Article and Find Full Text PDF

Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast.

View Article and Find Full Text PDF

Tumor-derived exosomes (TEXs) contain enriched miRNAs, and exosomal miRNAs can affect tumor growth, including cell proliferation, metastasis, and drug resistance through cell-to-cell communication. We investigated the role of exosomal miR-1260b derived from non-small cell lung cancer (NSCLC) in tumor progression. Exosomal miR-1260b induced angiogenesis by targeting homeodomain-interacting protein kinase-2 (HIPK2) in human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Since their development in the 1960s, immuno-gold techniques have been steadily used in biomedical science, because these techniques are applicable to all kinds of antigens, from viruses to animal tissues. Immuno-gold staining exploits antigen-antibody reactions and is used to investigate locations and interactions of components in the ultrastructure of tissues, cells, and particles. These methods are increasingly used with advanced technologies, such as correlative light and electron microscopy and cryo-techniques.

View Article and Find Full Text PDF

Various silica-based fluorescent nanoparticles ((Si-FNP)) with magnetic or metal cores represent a standard class of nanoparticles offering new opportunities for high-resolution cellular imaging and biomedicine applications, such as drug delivery. Their high solubility, homogeneity, biocompatibility, and chemical inertness Si-FNPs make them attractive probes for correlative light and electron microscopy (CLEM) studies, offering novel insights into nanoparticle-cell interactions in detail. In the present chapter, we present a procedure for imaging silica-based fluorescent magnetic core-shell nanoparticles (Si-FMNP) at the single-particle scale in cells.

View Article and Find Full Text PDF

The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy.

View Article and Find Full Text PDF

The cell nucleus is a three-dimensional, dynamic organelle organized into subnuclear compartments such as chromatin and nucleoli. The structure and function of these compartments are maintained by diffusion and interactions between related factors as well as by dynamic and structural changes. Recent studies using fluorescent microscopic techniques suggest that protein factors can access and are freely mobile in heterochromatin and in mitotic chromosomes, despite their densely packed structure.

View Article and Find Full Text PDF

The cell nucleus is three-dimensionally and dynamically organized by nuclear components with high molecular density, such as chromatin and nuclear bodies. The structure and functions of these components are represented by the diffusion and interaction of related factors. Recent studies suggest that the nucleolus can be assessed using various protein probes, as the probes are highly mobile in this organelle, although it is known that they have a densely packed structure.

View Article and Find Full Text PDF

Background And Aims: Membrane-covered self-expandable metal stents (SEMSs) have been developed to prolong the patency of stents by reducing tissue hyperplasia or tumor ingrowth. However, their effectiveness is attenuated by stent clogging as a result of biofilm formation on the inner surface of the membrane. The aim of this pilot study was to evaluate the efficacy and safety of SEMSs covered with a silicone membrane containing integrated silver particles (Ag-P) in malignant distal biliary obstruction.

View Article and Find Full Text PDF

Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.

View Article and Find Full Text PDF
Article Synopsis
  • EGF signaling previously thought to promote cancer cell growth instead inhibits proliferation and promotes cell death in non-small cell lung cancer (NSCLC) cells like A549.
  • Increased expression of redox factor-1 (Ref-1) and its interaction with EGR1 leads to higher levels of PTEN, which inhibits the Akt pathway and encourages apoptosis and autophagy.
  • EGF's effects are linked to changes in purinergic receptor activity and require NADPH oxidase function, suggesting a complex mechanism behind EGF's role in NSCLC cell regulation.
View Article and Find Full Text PDF

[Purpose] This study compared and analyzed use of an existing ankle ramp and a newly developed ankle ramp for stretching exercises. [Subjects] Fourteen subjects were included; they were stroke patients more than 6 months after onset, with no orthopedic or biological problems in the legs, so independent gait was possible. [Methods] The subjects performed stretching exercises for 5 min with an existing ankle ramp and a newly developed ankle ramp; foot pressure was then measured.

View Article and Find Full Text PDF

We demonstrate sub-100-as timing jitter optical pulse trains generated from free-running, 77.6 MHz repetition-rate, mode-locked Er-fiber lasers. At -0.

View Article and Find Full Text PDF

The polarization of high-harmonics from aligned N(2) molecules was measured by observing the visibility of spatial interference between two high-harmonics generated separately. The minimum visibility was observed at an angle of 60 degrees between the polarization of the harmonic generation laser field and the molecular orientation. In this case, the angular shift of harmonic polarization is 15 degrees from the molecular orientation.

View Article and Find Full Text PDF