Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems.
View Article and Find Full Text PDFThe potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcriptionpolymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.
View Article and Find Full Text PDFIn all organisms, DNA damage must be repaired quickly and properly, as it can be lethal for cells. Because eukaryotic DNA is packaged into nucleosomes, the structural units of chromatin, chromatin modification is necessary during DNA damage repair and is achieved by histone modification and chromatin remodeling. Chromatin remodeling proteins therefore play important roles in the DNA damage response (DDR) by modifying the accessibility of DNA damage sites.
View Article and Find Full Text PDFThe plant-specific transcription factor (TF) NAC103 was previously reported to modulate the unfolded protein response in Arabidopsis under endoplasmic reticulum (ER) stress. Alternatively, we report here that NAC103 is involved in downstream signaling of SOG1, a master regulator for expression of DNA damage response (DDR) genes induced by genotoxic stress. Arabidopsis NAC103 expression was strongly induced by genotoxic stress and nac103 mutants displayed substantial inhibition of DDR gene expression after gamma radiation or radiomimetic zeocin treatment.
View Article and Find Full Text PDFPlants orchestrate various DNA damage responses (DDRs) to overcome the deleterious impacts of genotoxic agents on genetic materials. Ionizing radiation (IR) is widely used as a potent genotoxic agent in plant DDR research as well as plant breeding and quarantine services for commercial uses. This review aimed to highlight the recent advances in cellular and phenotypic DDRs, especially those induced by IR.
View Article and Find Full Text PDFPlants are used as representative reference biota for the biological assessment of environmental risks such as ionizing radiation due to their immobility. This study proposed a faster, more economical, and more effective method than conventional cytogenetic methods for the biological dosimetry of ionizing radiation in plants (phytodosimetry). We compared various dose-response curves for the radiation-induced DNA damage response (DDR) in Arabidopsis thaliana after relatively "low-dose" gamma irradiation (3, 6, 12, 24, and 48 Gy) below tens of Gy using comet (or single-cell gel electrophoresis), gamma-H2AX, and transcriptomic assays of seven DDR genes (AGO2, BRCA1, GRG, PARP1, RAD17, RAD51, and RPA1E) using quantitative real time PCR.
View Article and Find Full Text PDFBiological dosimetry using chromosome aberration analyses in human peripheral blood lymphocytes is suitable and useful tool for estimating the dose when a nuclear or radiological emergency is investigated. Blood samples from five healthy donors were obtained to establish dose-response calibration curves for chromosomal aberrations after exposure to ionizing radiation. In this work, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation.
View Article and Find Full Text PDFRadiat Prot Dosimetry
June 2014
This study was performed to investigate the acute genotoxic effects of mercury and radiation on earthworms (Eisenia fetida). The levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida treated with mercuric chloride (HgCl₂) and ionising radiation (gamma rays) were analysed by means of the comet assay.
View Article and Find Full Text PDFIonizing radiation (IR) induces DNA strand breaks (DSBs), base damage, inhibition of protein activity, apoptosis by reactive oxygen species (ROS). Detoxification or removal of generated ROS can reduce oxidative damage. Antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase are immediately triggered for ROS scavenging.
View Article and Find Full Text PDF