In reconstructive surgery following partial mandibulectomy, the biomechanical integrity of the fibula free flap applied to the remaining mandibular region directly influences the prognosis of the surgery. The purpose of this study is to evaluate the biomechanical integrity of two fixation materials [titanium (Ti) and hydroxyapatite/poly-L-lactide (HA-PLLA)]. In this study, we simulated the mechanical properties of miniplate and screw fixations in two different systems by finite element analysis.
View Article and Find Full Text PDFA nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.
View Article and Find Full Text PDFThe occurrence of bone diseases has been increasing rapidly, in line with the aging population. A representative spinal fusion material, polyetheretherketone (PEEK), is advantageous in this regard as it can work in close proximity to the elastic modulus of cancellous bone. However, if it is used without surface modification, the initial osseointegration will be low due to lack of bioactivity, resulting in limitations in surgical treatment.
View Article and Find Full Text PDFThe purposes of this study are to establish and validate a finite element (FE) model using finite element analysis methods and to identify optimal loading conditions to simulate masticatory movement. A three-dimensional FE model of the maxillary and mandibular cortical bone, cancellous bone, and gingiva was constructed based on edentulous cone-beam-computed tomography data. Dental computer-aided design software was used to design the denture base and artificial teeth to produce a complete denture.
View Article and Find Full Text PDFPoly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone.
View Article and Find Full Text PDFComputer modeling and simulation (CM&S) technology is widely used in the medical device industry due to its advantages such as reducing testing time and costs. However, the developer's parameter settings during the modeling and simulation process can have a significant impact on the results. This study developed a test model for the rotational shear strength of dental implants and the constraint force of total knee replacements based on CM&S technology and proposes ideal parameters to ensure reliability.
View Article and Find Full Text PDFThe inherent self-repair abilities of the body often fall short when it comes to addressing injuries in soft tissues like skin, nerves, and cartilage. Tissue engineering and regenerative medicine have concentrated their research efforts on creating natural biomaterials to overcome this intrinsic healing limitation. This comprehensive review delves into the advancement of such biomaterials using substances and components sourced from marine origins.
View Article and Find Full Text PDFThe applicability of a polyether ether ketone locking compression plate (PEEK LCP) fabricated using FDM (fused deposition modeling)-based 3D printing to treat actual patients was studied. Three different tests-bending, axial compression, and axial torsion-were conducted on tibial non-osteoporotic comminuted diaphyseal fracture samples fixed with the commercial titanium alloy LCP and 3D-printed PEEK LCP. Comparing the outcomes of these tests revealed that the commercial titanium alloy LCP underwent plastic deformation in the bending and axial torsion tests, though the LCP did not fail even when an external force greater than the maximum allowable load of the tibia fixture of the LCP was applied.
View Article and Find Full Text PDFBackground: Spinopelvic fixation (SPF) has been a challenge for surgeons despite the advancements in instruments and surgical techniques. C-arm fluoroscopy-guided SPF is a widely used safe technique that utilizes the tear drop view. The tear drop view is an image of the corridor from the posterior superior iliac spine to the anterior inferior iliac spine (AIIS) of the pelvis.
View Article and Find Full Text PDFBackground: The purpose of this study was to establish a mechanical and histological basis for the development of biocompatible maxillofacial reconstruction implants by combining 3D-printed porous titanium structures and surface treatment. Improved osseointegration of 3D-printed titanium implants for reconstruction of maxillofacial segmental bone defect could be advantageous in not only quick osseointegration into the bone tissue but also in stabilizing the reconstruction.
Methods: Various macro-mesh titanium scaffolds were fabricated by 3D-printing.
Objective: When a hip screw needs to be changed, choosing between the conventional (C-type) and helical blade (H-type) types is difficult. In this biomechanical study, we compared these two screw types relative to the type of the initial screw used.
Methods: C- or H-type screws were inserted (leading screw) in three types of polyurethane bone models (Sawbone, Pacific Research Laboratories, Inc.
Although autogenous bone grafts are an optimal filling material for the induced membrane technique, limited availability and complications at the harvest site have created a need for alternative graft materials. We aimed to investigate the effect of an rhBMP-2-coated, 3D-printed, macro/microporous CaO-SiO -P O -B O bioactive ceramic scaffold in the treatment of critical femoral bone defects in rabbits using the induced membrane technique. A 15-mm segmental bone defect was made in the metadiaphyseal area of the distal femur of 14 rabbits.
View Article and Find Full Text PDFLately, in orthodontic treatments, the use of transparent aligners for the correction of malocclusions has become prominent owing to their intrinsic advantages such as esthetics, comfort, and minimal maintenance. Attempts at improving upon this technology by varying various parameters to investigate the effects on treatments have been carried out by several researchers. Here, we aimed to investigate the biomechanical and clinical effects of aligner thickness on stress distributions in the periodontal ligament and changes in the tooth's center of rotation.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is a free-form fabrication technique enabling fine feature control for tissue engineering applications. Especially, 3D scaffolds capable of supporting cell attachment, proliferation, and osteogenic differentiation are a prerequisite for bone tissue regeneration. Herein, we elaborated this approach to produce a 3D polycaprolactone (PCL) scaffold with long-term osteogenic activity.
View Article and Find Full Text PDFMechanical testing based on ISO 14801 standard is generally used to evaluate the performance of the dental implant system according to material and design changes. However, the test method is difficult to reflect on the clinical environment because the ISO 14801 standard does not take into account the various loads from different directions during chewing motion. In addition, the fracture pattern of the implant system can occur both in the horizontal and the vertical directions.
View Article and Find Full Text PDFAppl Bionics Biomech
September 2016
Background: Electrospinning is a simple and effective method for fabricating micro- and nanofiber matrices. Electrospun fibre matrices have numerous advantages for use as tissue engineering scaffolds, such as high surface area-to-volume ratio, mass production capability and structural similarity to the natural extracellular matrix (ECM). Therefore, electrospun matrices, which are composed of biocompatible polymers and various biomaterials, have been developed as biomimetic scaffolds for the tissue engineering applications.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate the biomechanical properties of a new anatomical locking metal block plate by comparing the initial biomechanical stability of three different fixation constructs for open wedge high tibial osteotomy (HTO).
Materials And Methods: Sawbones composite tibiae were used to make a 10-mm opening osteotomy model with uniplane technique. The osteotomy was secured with three different types of plates: Group I, new osteotomy plate without a metal block (n=5); Group II, new osteotomy plate with a 10-mm metal block (n=5); and Group III, two short metal block plates (n=5).
Biotechnol Appl Biochem
August 2014
This study concentrates on the potential application of conjugated polyelectrolytes (CPEs) to cell imaging and DNA delivery. Four different types of polyfluorene copolymers, namely, PAHFP-Br, PAEFP-Br, PAHFbT-Br, and PSBFP-Na, which have the same π-conjugated backbone but different side chains, were synthesized. For cytotoxicity testing, L-929 fibroblastic cells were treated with increasing concentrations (0-50 µM) of each CPE and then cell viability was determined by WST-8 assay.
View Article and Find Full Text PDFClin Biomech (Bristol)
February 2013
Background: Although many types of external fixators have been developed for distraction osteogenesis, all have some drawbacks. We recently developed a novel bone lengthening plate to overcome these problems. The purpose of this study is to conduct biomechanical analyses using cadavers to assess the stability of the bone lengthening plate in relation to distraction length and femoral bone mineral density.
View Article and Find Full Text PDFPolyphenolic compounds are well known as a functional food with various bioactivities. However, less attention has been paid to the effect of phenolic antioxidants on the preservation of blood vessels. In this study, the possible effects of green tea polyphenolic compounds (GTPCs) on the longterm preservation of the human saphenous vein (HSV) were investigated under physiological conditions.
View Article and Find Full Text PDF