The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge.
View Article and Find Full Text PDFThe high gravimetric energy density of hydrogen makes it an ideal chemical fuel to address the issues of fossil fuel depletion and environmental pollution. Even though transition metal sulfides (TMSs) have been extensively investigated as substitutes for noble metals, their effectiveness is still doubtful for practical applications. Herein, we introduce a facile and general strategy to fabricate heterojunctions with CdS nanorods and a multimetallic transition metal sulfide (CoNiMoS) for enhanced photocatalytic activity.
View Article and Find Full Text PDFDeveloping new and highly stable efficient photocatalysts is crucial for achieving high performance and selective photocatalytic CO conversion. In this paper, we designed a one-dimensional oxygen-deficient blue TiO(B) (BT) catalyst for improved electron mobility and visible light accessibility. In addition, hexagonal ZnInS (ZIS) nanosheets with a low bandgap and great visible light accessibility are employed to produce effective heterostructures with BT.
View Article and Find Full Text PDFWe re-examined the existence of planar tetracoordinate F (ptF) atoms, which was proposed recently by using high-level ab initio methods such as coupled-cluster singles and doubles with perturbative triples (CCSD(T)) with large basis sets. Our calculations indicate that the planar structures of FIn (), FTl (), FGaIn (), FInTl (), FInTl (), and FInTl () are not the minimum energy states; by contrast, they are transition states. Density functional theory calculations overestimate the size of the cavity formed by the four peripheral atoms, leading to erroneous conclusions regarding the existence of ptF atoms.
View Article and Find Full Text PDFDiatomic-site catalysts (DACs) garner tremendous attention for selective CO photoreduction, especially in the thermodynamical and kinetical mechanism of CO to C products. Herein, we first engineer a novel Zn-porphyrin/RuCu-pincer complex DAC (ZnPor-RuCuDAC). The heteronuclear ZnPor-RuCuDAC exhibits the best acetate selectivity (95.
View Article and Find Full Text PDFDiscovery of a new oxidation state for an element expands its chemistry. A high oxidation state, such as +7, is rare for sp-block elements except for halogens. In this study, we determined that Te can attain a +7 oxidation state through the existence of a distorted octahedron (DOH) structure of TeCl6+ based on coupled cluster singles and doubles with perturbative triples calculations.
View Article and Find Full Text PDFTuning the coordination environment and geometric structures of single atom catalysts is an effective approach for regulating the reaction mechanism and maximize the catalytic efficiency of single-atom centers. Here, a template-based synthesis strategy is proposed for the synthesis of high-density NiN sites anchored on the surface of hierarchically porous nitrogen-doped carbon nanofibers (Ni-HPNCFs) with different coordination environments. First-principles calculations and advanced characterization techniques demonstrate that the single Ni atom is strongly coordinated with both pyrrolic and pyridinic N dopants, and that the predominant sites are stabilized by NiN sites.
View Article and Find Full Text PDFConstructing stable heterostructures with appropriate active site architectures in covalent organic frameworks (COFs) can improve the active site accessibility and facilitate charge transfer, thereby increasing the catalytic efficiency. Herein, a pore-wall modification strategy is proposed to achieve regularly arranged TiO nanodots (≈1.82 nm) in the pores of COFs via site-specific nucleation.
View Article and Find Full Text PDFUnderstanding the long-term stability of MoS is important for various optoelectronic applications. Herein, we show that the long-term exposure to an oxygen atmosphere for up to a few months results in zigzag (zz)-directional line unzipping of the MoS basal plane. In contrast to exposure to dry or humid N atmospheres, dry O treatment promotes the initial formation of line defects, mainly along the armchair (ac) direction, and humid O treatment further promotes ac line unzipping near edges.
View Article and Find Full Text PDFUnderstanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described.
View Article and Find Full Text PDFWe employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)] (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (MC) which exhibits a lifetime of about 300 ps.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2022
The selection of layered number and time-course destruction of layers may affect the charge transfer between 2D-to-1D heterostructure, making it possible to improve the efficiency of solar-to-hydrogen evolution. Herein, we demonstrate a simple, low-cost systematic protocol of 2D-WSe nanolayer numbers ranging from 7 to 60 aiding the ultrasonication time-course. The resultant nanolayers were assembled on the surface of 1D-CdS nanorods, which demonstrated an improved surface shuttling property.
View Article and Find Full Text PDFTwo-dimensional (2D) g-CN (CN) has garnered massive interest for photocatalytic applications owing to its excellent photon contact area, visible-light absorption, and easy transport of photogenerated charge carriers to the surface. However, bulk CN suffers from intrinsically poor charge separation, limited specific surface area, and insufficient visible-light absorption, significantly limiting its photocatalytic efficiency. Exfoliation of bulk crystals into nanosheets with few layers has proven to be an effective and widely used strategy to enhance photocatalytic performance; however, this process is quite complicated, requiring longer times and external energy.
View Article and Find Full Text PDFDual-atom-site catalysts (DACs) have emerged as a new frontier in heterogeneous catalysis because the synergistic effect between adjacent metal atoms can promote their catalytic activity while maintaining the advantages of single-atom-site catalysts, such as almost 100 % atomic efficiency and excellent hydrocarbon selectivity. In this study, cobalt-based atom site catalysts with a Co -N coordination structure were synthesized and used for photodriven CO reduction. The resulting CoDAC containing 3.
View Article and Find Full Text PDFThe Korea Disease Control and Prevention Agency has established centers at 16 locations to screen vector populations and pathogens. The aims of this study were to determine the relative spatiotemporal distributions of mosquitoes that are flavivirus vectors, and to correlate them with instances of flaviviral disease in the Republic of Korea (ROK). We collected 67,203 mosquitoes in traps at 36 collection sites in 30 urban regions and migratory bird habitats in 2020.
View Article and Find Full Text PDFSince 2010, the Korea Disease Control and Prevention Agency has established centers at 16 locations to monitor disease vectors and pathogens. Here, we examined tick populations to understand the geographical and temporal distribution of severe fever with thrombocytopenia syndrome virus (SFTSV) vectors in 2020. From April to November, 63,376 ticks were collected from traps to monitor tick populations, with a trap index of 41.
View Article and Find Full Text PDFThe Korea Disease Control and Prevention Agency has established regional centers at 16 locations to monitor vectors and pathogens. We investigated the geographical and temporal distribution of chigger mite populations to understand tsutsugamushi disease epidemiology in 2020. To monitor weekly chigger mite populations, 3637 chigger mites were collected from sticky chigger mite traps in autumn.
View Article and Find Full Text PDFWe demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation.
View Article and Find Full Text PDFX-ray absorption near-edge structure (XANES) spectroscopy provides element specificity and is a powerful experimental method to probe local unoccupied electronic structures. In the soft x-ray regime, it is especially well suited for the study of 3-metals and light elements such as nitrogen. Recent developments in vacuum-compatible liquid flat jets have facilitated soft x-ray transmission spectroscopy on molecules in solution, providing information on valence charge distributions of heteroatoms and metal centers.
View Article and Find Full Text PDFLyme disease is a tick-borne zoonotic disease caused by sensu lato (s. l.) via transmission cycles involving competent tick vectors and vertebrate reservoirs.
View Article and Find Full Text PDFAedes albopictus (Skuse, 1894) is a mosquito vector raising global health concerns owing to its transmission of dengue, Zika, and chikungunya viruses. This vector accounts for a large proportion of the Korean mosquito community; however, autochthonous clinical cases resulting from this species remain unreported in South Korea. This study aimed to examine the geographical genetic variations and sources of Ae.
View Article and Find Full Text PDFWe have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)] (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the T/T crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kβ X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the T state as the lowest energy excited state of this compound.
View Article and Find Full Text PDFTransition-metal dichalcogenide materials play a major role in the state-of-the-art innovations for energy conversion because of potential applications resulting from their unique properties. These materials additionally show inordinate potential toward the progress of hygienic power sources to deal with increasing environmental disputes at the time of skyrocketing energy demands. Herein, we report earth-abundant, few-layered, MoSe-bridged MoS/cadmium sulfide (CdS) nanocomposites, which reduce photogenerated electron and hole recombination by effectively separating charge carriers to achieve a high photocatalytic efficiency.
View Article and Find Full Text PDF