Publications by authors named "Tae Hyun Sung"

Ferroelectric BaBiTiO was prepared using solid-state calcination at 950 °C for four hours. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy were utilized to understand its microstructure and other structural aspects. Particle size was around < 1.

View Article and Find Full Text PDF

This study presents a novel approach to fabricating interdigitated capacitive (IDC) touch sensors using graphite-based pencils on a wood substrate. The sensors were designed to detect touches and pressure variations, offering a cost-effective and environmentally friendly solution for sensor fabrication. The fabrication process involved abrasion of graphite pencils on a wooden substrate to create conductive traces, followed by the integration of interdigitated electrode structures.

View Article and Find Full Text PDF

Textile industry dye effluent contains a mixture of different kinds of dyes. Many times, photocatalysis is targeted as a solution for the treatment of dye effluent from the textile industry. Many researches have been published related to the photocatalysis of single textile dyes but in the real-world scenario, effluent is a mixture of dyes.

View Article and Find Full Text PDF

Electrowetting behaviour for carbon nanotubes (CNT) grown on stainless steel mesh was investigated. The effect of temperature, time, and applied bias voltage on the contact angle of water droplets was studied. The impact of temperature variation on contact angle was also performed for the temperature ranging from 25 to 70 °C.

View Article and Find Full Text PDF

This study explored the synthesis and sintering of potassium sodium niobate (KNN) nanoparticles, emphasizing morphology, crystal structure, and sintering methods. The as-synthesized KNN nanoparticles exhibited a spherical morphology below 200 nm. Solid state sintering (SSS) and laser-induced shockwave sintering (LISWS) were compared, with LISWS producing denser microstructures and improved grain growth.

View Article and Find Full Text PDF

The fabrication of a Poly (vinylidene fluoride) membrane (PVDF) and ceramic-assisted bismuth vanadate-polyvinylidene fluoride (BiVO-PVDF) composite membrane was achieved through the utilization of the electrospinning technique. The composition and structure of the fabricated membranes were characterized by X-ray powder diffraction, Raman analysis, scanning electron microscopy, Thermo gravimetric analyzer, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy techniques. The prepared polymeric membranes were then utilized for catalytic investigation and to explore, how structure affects catalytic activity using 5 mg/L, 10 mL methylene blue (MB) dye solution.

View Article and Find Full Text PDF

The mechanochemical ball milling followed by heating at 650 °C for 5 h successfully produced the single-phase BiVO powder. Catalytic activity for methylene blue dye degradation was investigated. Raman spectroscopy and X-ray diffraction were used to confirm the phase formation.

View Article and Find Full Text PDF

A thermoregulating smart textile based on phase change material (PCM) polyethylene glycol (PEG) was prepared by chemically grafting carboxyl-terminated PEG onto cotton. Further deposits of graphene oxide (GO) nanosheets were made on the PEG grafted cotton (PEG-g-Cotton) to improve the thermal conductivity of the fabric and to block harmful UV radiation. The GO-PEG-g-Cotton was characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and field emission-scanning electron microscopy (FE-SEM).

View Article and Find Full Text PDF

A single-phase BiVO powder is formed effectively through a mechanochemical ball milling approach at 650 °C in 5 h and its photocatalytic performance on methylene blue dye is explored. X-ray diffraction and Raman spectroscopy analytical instruments are utilized to confirm the phase formation. The evident presence of irregular-shaped grains is affirmed using a scanning electron microscope.

View Article and Find Full Text PDF

This study focuses on analyzing the poling effect of BaBiTiO (BBT) on the basis of photo and piezo-catalysis performance. BBT powder is prepared via a solid state reaction followed by calcination at 950 °C for 4 h. BBT is characterized by an X-ray diffractometer, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

In the present numerical simulation work, effective elastic and piezoelectric properties are calculated and a comparative study is conducted on a cement matrix-based piezocomposite with 0-3 and gyroid triply periodic minimal surface (TPMS) inclusions. The present study compares the effective properties of different piezoelectric materials having two different types of connectivity of the inclusions namely, 0-3 inclusions where the inclusions are physically separated from each other and are embedded within the matrix and the second one is TPMS inclusions having interpenetrating phase type connectivity. Effective properties are calculated for four different materials at five different volume fractions namely, 10%, 15%, 20%, 25%, and 30% volume fractions of inclusion by volume.

View Article and Find Full Text PDF

Finite element studies were conducted on 0.5Ba(Zr Ti) O-0.5(Ba Ca)TiO (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.

View Article and Find Full Text PDF

High torsional strength fibers are of practical interest for applications such as artificial muscles, electric generators, and actuators. Herein, we maximize torsional strength by understanding, measuring, and overcoming rheological thresholds of nanocarbon (nanotube/graphene oxide) dopes. The formed fibers show enhanced structure across multiple length scales, modified hierarchy, and improved mechanical properties.

View Article and Find Full Text PDF

Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna and radar cross section (RCS) measurements for various applications. For weapon systems, most measurements are captured in the near-field area in an anechoic chamber, considering the security requirements for the design process and high spatial costs of far-field measurements. As the theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field region, a scattered wave measured in the near-field region needs to be converted into field values in the far-field region.

View Article and Find Full Text PDF

Inspired by the role of cellular structures, which give three-dimensional robustness to graphene structures, a new type of graphene cantilever with mechanical resilience is introduced. Here, NHSCN is incorporated into graphene oxide (GO) gel using it as a coagulant for GO fiber self-assembly, a foaming agent, and a dopant. Subsequent thermal treatment of the GO fiber at 600 °C results in the evolution of gaseous species from NHSCN, yielding internally porous graphene cantilevers (NS-GF cantilevers).

View Article and Find Full Text PDF