Publications by authors named "Tae Hyun Kang"

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms.

View Article and Find Full Text PDF

The fragment crystallizable (Fc) domain of antibodies is responsible for their protective function and long-lasting serum half-life via Fc-mediated effector function, transcytosis, and recycling through its interaction with Fc receptors (FcRs) expressed on various immune leukocytes, epithelial, and endothelial cells. Therefore, the Fc-FcRs interaction is a control point of both endogenous and therapeutic antibody function. There are a number of reported genetic variants of FcRs, which include polymorphisms in (i) extracellular domain of FcRs, which change their affinities to Fc domain of antibodies; (ii) both cytoplasmic and intracellular domain, which alters the extent of signal transduction; and (iii) the promoter region of the FcRs gene, which affects the expression level of FcRs, thus being associated with the pathogenesis of disease indications.

View Article and Find Full Text PDF

Solubility of recombinant proteins (i.e., the extent of soluble versus insoluble expression in heterogeneous hosts) is the first checkpoint criterion for determining recombinant protein quality.

View Article and Find Full Text PDF

We used the molecular modeling program Rosetta to identify clusters of amino acid substitutions in antibody fragments (scFvs and scAbs) that improve global protein stability and resistance to thermal deactivation. Using this methodology, we increased the melting temperature (T) and resistance to heat treatment of an antibody fragment that binds to the hemagglutinin protein (anti-HA33). Two designed antibody fragment variants with two amino acid replacement clusters, designed to stabilize local regions, were shown to have both higher T compared to the parental scFv and importantly, to retain full antigen binding activity after 2 hours of incubation at 70 °C.

View Article and Find Full Text PDF

The constant region of immunoglobulin (Ig) G antibodies is responsible for their effector immune mechanism and prolongs serum half-life, while the fragment variable (Fv) region is responsible for cellular or tissue targeting. Therefore, antibody engineering for cancer therapeutics focuses on both functional efficacy of the constant region and tissue- or cell-specificity of the Fv region. In the functional aspect of therapeutic purposes, antibody engineers in both academia and industry have capitalized on the constant region of different IgG subclasses and engineered the constant region to enhance therapeutic efficacy against cancer, leading to a number of successes for cancer patients in clinical settings.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis.

View Article and Find Full Text PDF

The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains.

View Article and Find Full Text PDF

IgG antibodies mediate the clearance of target cells via the engagement of Fc gamma receptors (FcγRs) on effector cells by eliciting antibody-dependent cellular cytotoxicity and phagocytosis (ADCC and ADCP, respectively). Because (i) the IgG Fc domain binds to multiple FcγRs with varying affinities; (ii) even low Fc:FcγRs affinity interactions can play a significant role when antibodies are engaged in high avidity immune complexes and (iii) most effector cells express multiple FcγRs, the clearance mechanisms that can be mediated by individual FcγR are not well-understood. Human FcγRIIIa (hFcγRIIIa; CD16a), which exists as two polymorphic variants at position 158, hFcγRIIIa and hFcγRIIIa, is widely considered to only trigger ADCC, especially with natural killer (NK) cells as effectors.

View Article and Find Full Text PDF

Engineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.

View Article and Find Full Text PDF

For broad protection against infection by viruses such as influenza or HIV, vaccines should elicit antibodies that bind conserved viral epitopes, such as the receptor-binding site (RBS). RBS-directed antibodies have been described for both HIV and influenza virus, and the design of immunogens to elicit them is a goal of vaccine research in both fields. Residues in the RBS of influenza virus hemagglutinin (HA) determine a preference for the avian or human receptor, α-2,3-linked sialic acid and α-2,6-linked sialic acid, respectively.

View Article and Find Full Text PDF

The human intestine is a dynamic organ where the complex host-microbe interactions that orchestrate intestinal homeostasis occur. Major contributing factors associated with intestinal health and diseases include metabolically-active gut microbiota, intestinal epithelium, immune components, and rhythmical bowel movement known as peristalsis. Human intestinal disease models have been developed; however, a considerable number of existing models often fail to reproducibly predict human intestinal pathophysiology in response to biological and chemical perturbations or clinical interventions.

View Article and Find Full Text PDF

All clinically approved antibodies are of the IgG isotype and mediate the clearance of target cells via binding to Fcγ receptors and complement (C1q). Even though IgA can elicit powerful cytotoxic action via FcαRI receptor binding, IgA antibodies have not been amenable to therapeutic development. Here, we report the engineering of a "cross-isotype" antibody, IgGA, which combines the effector functions of both IgG and IgA.

View Article and Find Full Text PDF

Glycans anchored to residue N297 of the antibody IgG Fc domain are critical in mediating binding toward FcγRs to direct both adaptive and innate immune responses. However, using a full length bacterial IgG display system, we have isolated aglycosylated Fc domains with mutations that confer up to a 160-fold increase in the affinity toward the low affinity FcγRIIa-R131 allele as well as high selectivity against binding to the remarkably homologous human inhibitory receptor, FcγRIIb. The mutant Fc domain (AglycoT-Fc1004) contained a total of 5 amino acid substitutions that conferred an activating to inhibitory ratio of 25 (A/I ratio; FcyRIIa-R131:FcγRIIb).

View Article and Find Full Text PDF

Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors.

View Article and Find Full Text PDF
Article Synopsis
  • Aglycosylated therapeutic antibodies are being clinically tested, proving concerns about their stability and potential immunogenicity to be unfounded.
  • These antibodies can be engineered for unique functions that traditional glycosylated antibodies can't achieve.
  • Manufacturing aglycosylated antibodies in simpler organisms offers major benefits, including faster production times and fewer complications from glycan variability, positioning them as leading candidates in protein therapeutics.
View Article and Find Full Text PDF

The expression of IgG antibodies in Escherichia coli is of increasing interest for analytical and therapeutic applications. In this work, we describe a comprehensive and systematic approach to the development of a dicistronic expression system for enhanced IgG expression in E. coli encompassing: (i) random mutagenesis and high-throughput screening for the isolation of over-expressing strains using flow cytometry and (ii) optimization of translation initiation via the screening of libraries of synonymous codons in the 5' region of the second cistron (heavy chain).

View Article and Find Full Text PDF
Article Synopsis
  • Fc gamma receptors (FcgammaRs) are crucial for linking adaptive and innate immune responses by interacting with immune complexes formed by IgG antibodies and antigens.
  • The study successfully expressed the extracellular domains of human type I FcgammaRs in E. coli, overcoming previous challenges in producing certain receptors in bacteria.
  • The aglycosylated FcgammaRs exhibited binding selectivity to IgG subclasses similar to that of glycosylated versions from mammalian cells, indicating their potential for further research.
View Article and Find Full Text PDF

The N-linked glycan of immunoglobulin G (IgG) is indispensable for the interaction of the Fc domain with Fcgamma receptors on effector cells and the clearance of target cells via antibody dependent cell-mediated cytotoxicity (ADCC). Escherichia coli expressed, aglycosylated Fc domains bind effector FcgammaRs poorly and cannot elicit ADCC. Using a novel bacterial display/flow cytometric library screening system we isolated Fc variants that bind to FcgammaRI (CD64) with nanomolar affinity.

View Article and Find Full Text PDF

While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding.

View Article and Find Full Text PDF

To clarify the clinical efficacy of one of the traditional medicines in the treatment of patients with vascular dementia, we investigated the pharmacological activities of Choto-san in animal models. Pretreatment with Choto-san (0.75-6.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: