Background: Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine.
Results: We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10.
The intricate interplay between DNA damage response (DDR) and metabolism unveils a profound insight into the fundamental mechanisms governing the maintenance of genomic integrity [...
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2023
Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRY; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells.
View Article and Find Full Text PDFDeoxynivalenol (DON) is known as a vomitoxin, which frequently contaminates feedstuffs, such as corn, wheat, and barley. Intake of DON-contaminated feed has been known to cause undesirable effects, including diarrhea, emesis, reduced feed intake, nutrient malabsorption, weight loss, and delay in growth, in livestock. However, the molecular mechanism of DON-induced damage of the intestinal epithelium requires further investigation.
View Article and Find Full Text PDFDeoxynivalenol (DON) is a mycotoxin that is found in feed ingredients derived from grains such as corn and wheat. Consumption of DON-contaminated feed has been shown to cause damage to the intestine, kidneys, and liver. However, the molecular mechanism by which DON exerts its effect in the small intestine is not completely understood.
View Article and Find Full Text PDFGenomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities.
View Article and Find Full Text PDFATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA.
View Article and Find Full Text PDFThe physiological impact of the aberrant oxidation products on genomic DNA were demonstrated by embryonic lethality or the cancer susceptibility and/or neurological symptoms of animal impaired in the base excision repair (BER); the major pathway to maintain genomic integrity against non-bulky DNA oxidation. However, growing evidence suggests that other DNA repair pathways or factors that are not primarily associated with the classical BER pathway are also actively involved in the mitigation of oxidative assaults on the genomic DNA, according to the corresponding types of DNA oxidation. Among others, factors dedicated to lesion recognition in the nucleotide excision repair (NER) pathway have been shown to play eminent roles in the process of lesion recognition and stimulation of the enzyme activity of some sets of BER factors.
View Article and Find Full Text PDFDNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair.
View Article and Find Full Text PDFGenetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis.
View Article and Find Full Text PDFUltraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER).
View Article and Find Full Text PDFForskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment.
View Article and Find Full Text PDFAberrant expression of BORIS/CTCFL (Brother of the Regulator of Imprinted Sites/CTCF-like protein) is reported in different malignancies. In this study, we characterized the entire promoter region of BORIS/CTCFL, including the CpG islands, to assess the relationship between BORIS expression and lung cancer. To simplify the construction of luciferase reporter cassettes with various-sized portions of the upstream region, genomic copies of BORIS were isolated using TAR cloning technology.
View Article and Find Full Text PDFNon-thermal plasma (NTP) has been emerging as a potential cancer therapeutic. However, the practical use of NTP as a cancer therapy requires a better understanding of the precise mechanisms underlying NTP-induced DNA damage responses in order to achieve optimal efficacy. It has been shown that the addition of oxygen gas flow during NTP treatment (NTPO), when compared to NTP exposure alone, can induce a 2-3 fold greater generation of intracellular reactive oxygen species (ROS) in A549 cells.
View Article and Find Full Text PDFThe capacity of tumor cells for nucleotide excision repair (NER) is a major determinant of the efficacy of and resistance to DNA-damaging chemotherapeutics, such as cisplatin. Here, we demonstrate that using lesion-specific monoclonal antibodies, NER capacity is enhanced in human lung cancer cells after preconditioning with DNA-damaging agents. Preconditioning of cells with a nonlethal dose of UV radiation facilitated the kinetics of subsequent cisplatin repair and vice versa.
View Article and Find Full Text PDFPurpose: Previous study identified E2F1 as a key mediator of non-muscle-invasive bladder cancer (NMIBC) progression. The aim of this study was to identify the E2F1-related genes associated with poor prognosis and aggressive characteristics of bladder cancer.
Experimental Design: Microarray analysis was performed to find E2F1-related genes associated with tumor progression and aggressiveness in the gene expression data from 165 primary patients with bladder cancer.
Biochem Biophys Res Commun
June 2015
Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A-G (XPA-XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER.
View Article and Find Full Text PDFThe atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium.
View Article and Find Full Text PDFPurpose: Although standard treatment with transurethral resection and intravesical therapy (IVT) is known to be effective to address the clinical behavior of non-muscle-invasive bladder cancer (NMIBC), many patients fail to respond to the treatment and frequently experience disease recurrence. Here, we aim to identify a prognostic molecular signature that predicts the NMIBC heterogeneity and response to IVT.
Experimental Design: We analyzed the genomic profiles of 102 patients with NMIBC to identify a signature associated with disease recurrence.
In this study, we performed two-dimensional electrophoresis with protein extracts from lizard tails, and analyzed the protein expression profiles during the tissue regeneration to identify the dedifferentiation factor. As a result, we identified 18 protein spots among total of 292 spots, of which proteins were specifically expressed during blastema formation. We selected lactoferrin as a candidate because it is the mammalian homolog of leech-derived tryptase inhibitor, which showed the highest frequency among the 18 proteins.
View Article and Find Full Text PDFNucleic Acids Res
April 2014
Mammalian cryptochromes (Crys) are essential circadian clock factors implicated in diverse clock-independent physiological functions, including DNA damage responses. Here we show that Cry1 modulates the ATR-mediated DNA damage checkpoint (DDC) response by interacting with Timeless (Tim) in a time-of-day-dependent manner. The DDC capacity in response to UV irradiation showed a circadian rhythm.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor repressor (AHRR) inhibits the transcription of the aryl hydrocarbon receptor (AHR) by binding to XRE. We report that AHRR expression is inhibited by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP decreased the mRNA stability and protein expression of AHRR, and TTP-overexpressing cells made smaller colonies than the control.
View Article and Find Full Text PDFMitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate MAP kinase signaling. However, MKP2 functions are still largely unknown. In this study, we showed that MKP2 could regulate histone H3 phosphorylation under oxidative stress conditions.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
October 2012
Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells.
View Article and Find Full Text PDF