Publications by authors named "Tae Ho Kong"

Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that affects the lining of synovial joints, causing stiffness, pain, inflammation, and joint erosion.

View Article and Find Full Text PDF

Background And Objectives: Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying their effect needs to be studied continuously.

View Article and Find Full Text PDF

Treating aged animals with plasma of an early developmental stage (e.g, umbilical cord plasma) showed an impressive potential to slow age-associated degradation of neuronal and cognitive functions. Translating such findings to clinical realities, however, requires effective ways for assessing treatment efficacy; ideal methods should be minimally invasive, amenable for serial assays, cost-effective, and quantitative.

View Article and Find Full Text PDF

Human placenta amniotic membrane-derived mesenchymal stem cells (AMSCs) regulate immune responses, and this property can be exploited to treat stroke patients via cell therapy. We investigated the expression profile of AMSCs cultured under hypoxic conditions and observed interesting expression changes in various genes involved in immune regulation. CD200, an anti-inflammatory factor and positive regulator of TGF-β, was more highly expressed under hypoxic conditions than normoxic conditions.

View Article and Find Full Text PDF

Traumatic brain injury (TBI), a complicated form of brain damage, is a major cause of mortality in adults. Following mechanical and structural primary insults, a battery of secondary insults, including neurotransmitter-mediated cytotoxicity, dysregulation of calcium and macromolecule homeostasis, and increased oxidative stress, exacerbate brain injury and functional deficits. Although stem cell therapy is considered to be an alternative treatment for brain injuries, such as TBI and stroke, many obstacles remain.

View Article and Find Full Text PDF

Abnormal angiogenesis is a primary cause of many eye diseases, including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Mesenchymal stem cells (MSCs) are currently being investigated as a treatment for several such retinal diseases based on their neuroprotective and angiogenic potentials. In this study, we evaluated the role of systemically injected human placental amniotic membrane-derived MSCs (AMSCs) on pathological neovascularization of proliferative retinopathy.

View Article and Find Full Text PDF

Neonatal asphyxia is an important contributor to cerebral palsy (CP), for which there is no effective treatment to date. The administration of human cord blood cells (hUCBCs) is emerging as a therapeutic strategy for the treatment of neurological disorders. However, there are few studies on the application of hUCBCs to the treatment of neonatal ischemia as a model of CP.

View Article and Find Full Text PDF

Object: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent hematopoietic growth factor that both enhances the survival and drives the differentiation and proliferation of myeloid lineage cells. Recent studies have suggested that GM-CSF has a neuroprotective effect against CNS injury. In this paper, the authors investigated the neuroprotective effect of GM-CSF on neuron survival and locomotor behavior in a rat model of focal cerebral ischemic injury.

View Article and Find Full Text PDF

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that has the potential for clinical application. The biological effects of GM-CSF have been well characterized, and include stimulation of bone marrow hematopoietic stem cell proliferation and inhibition of apoptosis of hematopoietic cells. In contrast, the therapeutic effects of GM-CSF on the central nervous system in acute injury such as stroke and spinal cord injury have been reported only recently.

View Article and Find Full Text PDF

Object: This study investigated the effects of granulocyte macrophage-colony stimulating factor (GM-CSF) on the scar formation and repair of spinal cord tissues in rat spinal cord injury (SCI) model.

Methods: Sprague-Dawley male rats (8 weeks old) were randomly divided into the sham-operated group, spinal cord injury group, and injury with GM-CSF treated group. A spinal cord injury was induced at T9/10 levels of rat spinal cord using a vascular clip.

View Article and Find Full Text PDF