Publications by authors named "Tae H"

Pegylated interferon (PEG-IFN) is now the standard treatment for chronic hepatitis C. But, there are few reports about patients with end stage renal disease, and treatment protocol for HCV infection has not been determined, particularly in patients on peritoneal dialysis. We experienced a case of a peritoneal dialysis patient with chronic hepatitis C who was successfully treated with PEG-IFN monotherapy.

View Article and Find Full Text PDF

The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface.

View Article and Find Full Text PDF

Multiple health benefits of calorie restriction (CR) and alternate day fasting (ADF) regimens are widely recognized. Experimental data concerning the effects of calorie restriction on cardiac health are more controversial, ranging from evidence that ADF protects heart from ischemic damage but results in developing of diastolic dysfunction, to reports that CR ameliorates the age-associated diastolic dysfunction. Here we investigated the effects of chronic CR on morphology and function of the cardiovascular system of aged rats and cardioprotective effect of CR against ischemic damage in the experimental rat model of MI.

View Article and Find Full Text PDF

A key component of excitation contraction (EC) coupling in skeletal muscle is the cytoplasmic linker (II-III loop) between the second and third transmembrane repeats of the α(1S) subunit of the dihydropyridine receptor (DHPR). The II-III loop has been previously examined in vitro using a linear II-III loop with unrestrained N- and C-terminal ends. To better reproduce the loop structure in its native environment (tethered to the DHPR transmembrane domains), we have joined the N and C termini using intein-mediated technology.

View Article and Find Full Text PDF

The vascular form of Ehlers-Danlos syndrome (vEDS), a rare disease with grave complications resulting from rupture of major arteries, is caused by mutations of collagen type III [α1 chain of collagen type III (COL3A1)]. The only, recently proven, preventive strategy consists of the reduction of arterial wall stress by β-adrenergic blockers. The heterozygous (HT) Col3a1 knockout mouse has reduced expression of collagen III and recapitulates features of a mild presentation of the disease.

View Article and Find Full Text PDF

Using a custom CGH-like oligonucleotide array to measure the global microsatellite content in the genomes of 72 cancer, cancer-free, and high risk patient and cell line samples (56 germline DNA and 16 in tumor or tumor cell line DNA) we found a unique, reproducible, and statistically significant pattern of 18 motif-specific microsatellite families (out of 962 possible 1-6 mer repeats) in breast cancer patient germline and tumor DNA, but not in germline DNA of cancer-free volunteer controls or in breast cancer patients with BRCA1/2 mutations. These high-similarity A/T rich repetitive motifs were also more pronounced in the germlines and tumors of colon cancer tumor patients (3/6 samples) and microsatellite unstable colon cancer cell lines; however, germline DNA of sporadic breast cancer patients exhibited the largest global content shift for those motifs with extreme AT/GC ratios. These results indicate that global microsatellite variability is complex, suggest the existence of a previously unknown genomic destabilization mechanism in breast cancer patients' germline DNA, and warrant further testing of such microsatellite variability as a predictor of future breast cancer development.

View Article and Find Full Text PDF

Here we describe the concise syntheses of the 15 diastereomers and key analogs of the natural product tyroscherin. While systematic analysis of the analogs clearly demonstrated that the hydrocarbon tail is important for biological activity, structure-activity relationship studies of the complete tyroscherin diastereoarray revealed a surprisingly expansive stereochemical tolerance for the cytotoxic activity. Our results represent a departure from the tenet that biological activity is constrained to a narrow pharmacophore, and highlight the recently emerging appreciation for stereochemical flexibility in defining the essential structural elements of biologically active small molecules.

View Article and Find Full Text PDF

The second of three SPRY domains (SPRY2, S1085 -V1208) located in the skeletal muscle ryanodine receptor (RyR1) is contained within regions of RyR1 that influence EC coupling and bind to imperatoxin A, a toxin probe of RyR1 channel gating. We examined the binding of the F loop (P1107-A1121) in SPRY2 to the ASI/basic region in RyR1 (T3471-G3500, containing both alternatively spliced (ASI) residues and neighboring basic amino acids). We then investigated the possible influence of this interaction on excitation contraction (EC) coupling.

View Article and Find Full Text PDF

RAGE is pattern recognizing receptors for diverse endogenous ligands. RAGE activation by RAGE ligands is known to be associated with reactive oxygen species generation, activation of NF kappa B, as well as recruitment of proinflammatory cells. Activated endothelial cells, vascular smooth muscle cells in atherosclerotic plaques and activated inflammatory cells all have increased expression of RAGE, which with its interaction with RAGE ligands increases the secretion of proinflammatory cytokines and cell adhesion molecules.

View Article and Find Full Text PDF

Strong cardioprotective properties of erythropoietin (EPO) reported over the last 10 years have been difficult to translate to clinical applications for ischemic cardioprotection owing to undesirable parallel activation of erythropoiesis and thrombogenesis. A pyroglutamate helix B surface peptide (pHBP), recently engineered to include only a part of the EPO molecule that does not bind to EPO receptor and thus, is not erythropoietic, retains tissue protective properties of EPO. Here we compared the ability of pHBP and EPO to protect cardiac myocytes from oxidative stress in vitro and cardiac tissue from ischemic damage in vivo.

View Article and Find Full Text PDF

Background: Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform) to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus.

View Article and Find Full Text PDF

Background: The reptiles, characterized by both diversity and unique evolutionary adaptations, provide a comprehensive system for comparative studies of metabolism, physiology, and development. However, molecular resources for ectothermic reptiles are severely limited, hampering our ability to study the genetic basis for many evolutionarily important traits such as metabolic plasticity, extreme longevity, limblessness, venom, and freeze tolerance. Here we use massively parallel sequencing (454 GS-FLX Titanium) to generate a transcriptome of the western terrestrial garter snake (Thamnophis elegans) with two goals in mind.

View Article and Find Full Text PDF

The efficient synthesis and biological evaluation of both the reported and revised structures of tyroscherin have been achieved. Central to our synthesis is a cross metathesis reaction that generated the trans-olefin regioselectively. This synthetic strategy enabled the facile manipulation of tyroscherin stereochemistry, facilitating the generation of all 16 tyroscherin diastereomers and a photoactivatable tyroscherin-based affinity probe for future mode of action studies.

View Article and Find Full Text PDF
Article Synopsis
  • Tropomyosin (TM) isoforms—alpha-TM, beta-TM, and gamma-TM—play crucial roles in heart and muscle contraction, with alpha-TM being the most prevalent in cardiac and skeletal muscle, while gamma-TM is significant in slow-twitch fibers.
  • Researchers created transgenic mice with varying expressions of beta-TM and gamma-TM alongside alpha-TM, which led to a hyper contractile heart phenotype despite not showing pathological issues.
  • The study highlights that gamma-TM exhibits functional dominance in muscle performance over alpha-TM and beta-TM at similar expression levels, influencing calcium sensitivity and cooperative activation in muscle contraction mechanisms.
View Article and Find Full Text PDF

This study is the first report of the branching pattern of the four major branches of the subclavian artery in German Shepherd dogs. A total 116 subclavian artery casts made of silicon under mean arterial pressure were analysed. The casts were classified according to their branching order and the pattern of the first two branches of the vertebral artery and costocervical trunk.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome is a rare genetic disorder resulting from mutations in the α-1 chain of type III collagen (COL3A1) and manifesting as tissue fragility with spontaneous rupture of the bowel, gravid uterus, or large or medium arteries. The heterozygous Col3a1 knockout mouse was investigated as a model for this disease. The collagen content in the abdominal aorta of heterozygotes was reduced, and functional testing revealed diminishing wall strength of the aorta in these mice.

View Article and Find Full Text PDF

When displaying a square-type image with peak luminance for approximately 500 h in a 42 in. plasma display panel TV with high Xe (15%) content, halo-type boundary image sticking was observed in the nondischarge region adjacent to the discharge region. The halo-type boundary image sticking phenomenon is due mainly to the redeposit of the Mg species on the MgO layer in the nondischarge region adjacent to the discharge region, which is verified by measuring the redeposited Mg species in the boundary image sticking region using a cross-sectional scanning electron microscope.

View Article and Find Full Text PDF

We recently identified the second of three SPRY domains in the skeletal muscle ryanodine receptor type 1 (RyR1) as a potential binding partner in the RyR1 ion channel for the recombinant II-III loop of the skeletal muscle dihydropyridine receptor, for a scorpion toxin, Imperatoxin A and for an interdomain interaction within RyR1. SPRY domains are structural domains that were first described in the fungal Dictyostelium discoideum tyrosine kinase spore lysis A and all three isoforms of the mammalian ryanodine receptor (RyR). Our studies are the first to assign a function to any of the three SPRY domains in the RyR.

View Article and Find Full Text PDF

MAPSI (Management and Analysis for Polyketide Synthase Type I) has been developed to offer computational analysis methods to detect type I PKS (polyketide synthase) gene clusters in genome sequences. MAPSI provides a genome analysis component, which detects PKS gene clusters by identifying domains in proteins of a genome. MAPSI also contains databases on polyketides and genome annotation data, as well as analytic components such as new PKS assembly and domain analysis.

View Article and Find Full Text PDF

Polyketides have diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. They are biosynthesized from short carboxylic acid precursors by polyketide synthases (PKSs). As natural polyketide products include many clinically important drugs and the volume of data on polyketides is rapidly increasing, the development of a database system to manage polyketide data is essential.

View Article and Find Full Text PDF

1. The dihydropyridine receptor (DHPR) II-III loop is an intrinsically unstructured region made up of alpha-helical and beta-turn secondary structure elements with the N and C termini in close spatial proximity. 2.

View Article and Find Full Text PDF

This study examined the branching pattern of the aortic arch and its major branches in Korean water deer (Hydropotes inermis argyropus, Heude, 1884). Silicone casts were taken from the vessels of 23 carcasses (male 14, female 9) with body weights ranging from 1.3-16.

View Article and Find Full Text PDF

The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins.

View Article and Find Full Text PDF

We have developed a heterobifunctional all-small molecule PROTAC (PROteolysis TArgeting Chimera) capable of inducing proteasomal degradation of the androgen receptor. This cell permeable PROTAC consists of a non-steroidal androgen receptor ligand (SARM) and the MDM2 ligand known as nutlin, connected by a PEG-based linker. The SARM-nutlin PROTAC recruits the androgen receptor to MDM2, which functions as an E3 ubiquitin ligase.

View Article and Find Full Text PDF

Background: Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKS)s, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research.

View Article and Find Full Text PDF