Publications by authors named "Tae H Han"

MXene, a promising photothermal nanomaterial, faces challenges due to densely stacked nanosheets with high refractive index (RI). To maximize photothermal performance, MXene metamaterials (m-MXenes) are developed with a superlattice with alternating MXene and organic layers, reducing RI and inducing multiple light reflections. This approach increases light absorption, inducing 90% photothermal conversion efficiency.

View Article and Find Full Text PDF

The Drosophila neuromuscular junction (NMJ) is a powerful genetic system that has revealed numerous conserved mechanisms for synapse development and homeostasis. The fly NMJ uses glutamate as the excitatory neurotransmitter and relies on kainate-type glutamate receptors and their auxiliary protein Neto for synapse assembly and function. However, despite decades of study, the reconstitution of NMJ glutamate receptors using heterologous systems has been achieved only recently, and there are no reports on the gating properties for the recombinant receptors.

View Article and Find Full Text PDF

Objective: To analyze the complex relationship between socioeconomic status (SES) and neurodevelopmental achievements by investigating the temporal dynamics of these associations from birth to age 6.

Methods: This retrospective cohort study was conducted over 6 years using population-based data from the National Health Insurance Service and integrated data from the National Health Screening Program for Infants and Children. Participants were children born between 2009 and 2011 in Korea without neurodevelopmental delays with potential developmental implications.

View Article and Find Full Text PDF

State-of-the-art triboelectric nanogenerators (TENGs) typically employ fluoropolymers, highly negative chargeable materials in triboelectric series. However, many researchers nowadays are concerned about environmental pollution caused by poly-and per-fluoroalkyl substances (PFAS) due to their critical immunotoxicity as fluoropolymers are likely to release PFAS into the ecosystem during their life cycle. Herein, a sulfur-rich polymer (SRP)/MXene composite, offering high-performance yet sustainable TENG is developed.

View Article and Find Full Text PDF

Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications because it provides material-specific information. That is, material decomposition (MD) can be achieved through energy discrimination.

View Article and Find Full Text PDF

Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo.

View Article and Find Full Text PDF

Layered membranes assembled from two-dimensional (2D) building blocks such as graphene oxide (GO) are of significant interest in desalination and osmotic power generation because of their ability to selectively transport ions through interconnected 2D nanochannels between stacked layers. However, architectural defects in the final assembled membranes (e.g.

View Article and Find Full Text PDF

The formation of functional synapses requires co-assembly of ion channels with their accessory proteins which controls where, when, and how neurotransmitter receptors function. The auxiliary protein Neto modulates the function of kainate-type glutamate receptors in vertebrates as well as at the neuromuscular junction (NMJ), a glutamatergic synapse widely used for genetic studies on synapse development. We previously reported that Neto is essential for the synaptic recruitment and function of glutamate receptors.

View Article and Find Full Text PDF

Nanohybrid assemblies provide an effective platform for integrating the intrinsic properties of individual components into microscale fibers. In this study, a novel approach for creating mechanically and environmentally stable MXene fibers through the synergistic assembly of MXene and polyacrylonitrile (PAN), is introduced. Unlike fibers generated via a conventional stabilization process, which relies on air-based stabilization to transform the PAN molecules into ring structures fundamental to carbon fibers, the hybrid fibers are annealed in an Ar atmosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Chiral Pb-free metal-halide semiconductors (MHSs) are gaining interest in spintronics for their unique spin properties and the chiral-induced spin selectivity (CISS) effect, but most known chiral MHSs have limited structures.
  • This study introduces a new class of chiral MHSs based on palladium (Pd) with 1D square-pyramidal and 0D square-planar configurations, resulting in a general formula that reflects their structural diversity.
  • The research shows a successful transfer of chirality from organic components to the inorganic Pd-halides, revealing a high distortion index and demonstrating potential for these materials in future spintronic applications.
View Article and Find Full Text PDF

Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C.

View Article and Find Full Text PDF

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate.

View Article and Find Full Text PDF

The neurodevelopmental outcomes of preterm infants can be stratified based on the level of prematurity. We explored brain structural networks in extremely preterm (EP; < 28 weeks of gestation) and very-to-late (V-LP; ≥ 28 and < 37 weeks of gestation) preterm infants at term-equivalent age to predict 2-year neurodevelopmental outcomes. Using MRI and diffusion MRI on 62 EP and 131 V-LP infants, we built a multimodal feature set for volumetric and structural network analysis.

View Article and Find Full Text PDF

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage.

View Article and Find Full Text PDF

Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films.

View Article and Find Full Text PDF

Two-dimensional TiCT MXenes are promising candidates for a wide range of film- or fiber-based devices owing to their solution processability, high electrical conductivity, and versatile surface chemistry. The surface terminal groups (T) of MXenes can be removed to increase their inherent electrical performance and ensure chemical stability. Therefore, understanding the chemical evolution during the removal of the terminal groups is crucial for guiding the production, processing, and application of MXenes.

View Article and Find Full Text PDF

A Joule heater made of emerging 2D nanosheets, i.e., MXene, has the advantage of low-voltage operation with stable heat generation owing to its highly conductive and uniformly layered structure.

View Article and Find Full Text PDF

Surface modification to improve the oxidation stability and dispersibility of MXene in diverse organic media is a facile strategy for broadening its application. Among the various ligands that can be grafted on the MXene surface, oleylamine (OAm), with amine functionalities, is an advantageous candidate owing to its strong interactions and commercial viability. OAms are grafted onto MXene through covalent bonds induced by nucleophilic reactions and H bonds in liquid interface reactions at room temperature.

View Article and Find Full Text PDF

Increased demand for plastics leads to a large amount of plastic manufacturing, which is accompanied by inappropriate disposal of plastics. The by-products of these waste plastics are microplastics (MPs; less than 5 nm in size), which are produced because of various environmental and physicochemical factors, posing hazardous effects to the ecosystem, such as the death of marine organisms due to the swallowing of plastic specks of no nutritional value. Therefore, the collection, preparation, identification, and recycling of these microsized plastics have become imperative.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene-based fiber-shaped supercapacitors (FSSCs) are gaining attention as flexible and stable energy storage devices, enhanced by techniques like heteroatom doping and metal oxide incorporation.
  • The study introduces a scalable method that combines these techniques, using nitrogen and sulfur-doped graphene fibers for effective energy conversion during rapid heating processes.
  • Results show a significant increase in energy storage capacity (from 8.32 F g to 68.88 F g), impressive durability (96.67% capacitance retention after 20,000 cycles), and good mechanical flexibility in the new supercapacitors.
View Article and Find Full Text PDF

Microglia are known to be activated in the hypothalamic paraventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM).

View Article and Find Full Text PDF

Circadian transcriptional timekeepers in pacemaker neurons drive profound daily rhythms in sleep and wake. Here we reveal a molecular pathway that links core transcriptional oscillators to neuronal and behavioral rhythms. Using two independent genetic screens, we identified mutants of () with poor behavioral rhythmicity.

View Article and Find Full Text PDF

Background: COVID-19 has a direct impact on the employment of older people. This adds to the challenge of ageism. The World Health Organization has started a worldwide campaign to combat ageism and has called for more research and evidence-based strategies that have the potential to be scaled up.

View Article and Find Full Text PDF

Purpose: Breaking of disposable blades during emergency endotracheal intubation has been reported. Breakage can cause serious injury and foreign body ingestion. We aimed to measure and analyze the strength characteristics of different disposable videolaryngoscope blades with the application of an upward-lifting force.

View Article and Find Full Text PDF

Controlling the microstructures in fibers, such as crystalline structures and microvoids, is a crucial challenge for the development of mechanically strong graphene fibers (GFs). To date, although GFs graphitized at high temperatures have exhibited high tensile strength, GFs still have limited the ultimate mechanical strength owing to the presence due to the structural defects, including the imperfect alignment of graphitic crystallites and the presence of microsized voids. In this study, we significantly enhanced the mechanical strength of GF by controlling microstructures of fibers.

View Article and Find Full Text PDF