Publications by authors named "Tae Bong Eom"

A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique.

View Article and Find Full Text PDF

A technique which can measure thickness variation of a moving glass plate in real-time with nanometric resolution is proposed. The technique is based on the double-slit interference of light. Owing to the nature of differential measurement scheme, the measurement system is immune to harsh environmental condition of a production line, and the measurement results are not affected by the swaying motion of the panel.

View Article and Find Full Text PDF

This Note presents a new absolute planar position measurement method using a two-dimensional phase-encoded binary grating and a sub-division process where nonlinearity error is compensated inherently. Two orthogonally accumulated intensity profiles of the image of the binary grating are analyzed separately to obtain the absolute position values in each axis. The nonlinearity error caused by the non-ideal sinusoidal signals in the intensity profile is compensated by modifying the configuration of the absolute position binary code and shift-averaging the intensity profile.

View Article and Find Full Text PDF

We present a new absolute position measurement method using a single track binary code where an absolute position code is encoded by changing the phase of one binary state representation. It can be decoded efficiently using structural property of the binary code, and its sub-division is possible by detecting the relative positions of the binary state representation used for the absolute position encoding. Therefore, the absolute position encoding does not interfere with the sub-division process and so any pseudo-random sequence can be used as the absolute position code.

View Article and Find Full Text PDF

We present an angle generator with high resolution and accuracy, which uses multiple ultrasonic motors and a self-calibratable encoder. A cylindrical air bearing guides a rotational motion, and the ultrasonic motors achieve high resolution over the full circle range with a simple configuration. The self-calibratable encoder can compensate the scale error of a divided circle (signal period: 20") effectively by applying the equal-division-averaged method.

View Article and Find Full Text PDF

We have proposed and demonstrated a novel method that can determine both the geometrical thickness and refractive index of a silicon wafer at the same time using an optical comb. The geometrical thickness and refractive index of a silicon wafer was determined from the optical thickness using phase information obtained in the spectral domain. In a feasibility test, the geometrical thickness and refractive index of a wafer were measured to be 334.

View Article and Find Full Text PDF

We developed an accurate and efficient method for measuring the refractive indices of a transparent plate by analyzing the transmitted intensity versus angle of incidence. By using two different wavelengths, we resolved the 2pi-ambiguity inherent to the phase measurement involving a thick medium, leading to independent determination of the absolute index of refraction and the thickness with a relative uncertainty of 10(-5). The validity and the accuracy of our method were confirmed with a standard reference material.

View Article and Find Full Text PDF

We present a high speed phase shifting interferometer which utilizes the self injection locking of a frequency tunable laser diode. By using a confocal Fabry-Perot cavity made of ultra low expansion glass, and linearly modulating the laser diode current, the laser frequency could be injection locked to the resonant modes of the Fabry-Perot cavity consecutively. It provided equal phase steps to the interferograms which are ideal to be analyzed by the Carré algorithm.

View Article and Find Full Text PDF