Land-use changes along slope position can have a major positive or negative impact on soil environment and agricultural productivity. Relevant information to understand the negative effect of land-use change and slope variability on soil property is a vital element to monitor, plan and make the decision to improve productivity and restore the environment. The aim was to examine the effects of land-use-cover-changes along slope position on the selected soil physicochemical properties in the Coka watershed.
View Article and Find Full Text PDFUnderstanding organic carbon accumulations in soils is crucially essential concerning carbon sequestration, fighting climate change, increasing land productivity, improving soil properties, providing energy to the microbial community, enhancing ecological restoration, and reversing global environmental damage. This study was aimed at assessing the effects of land-use-cover change (LULC) on soil organic carbon (SOC), its' stock potential, and bulk-density (BD) along slope position in the Coka watershed. Replicated soil samples had been collected and composited from 30 cm depth topsoil of five major land use types and three slope positions.
View Article and Find Full Text PDF